Conservation Genetics

, Volume 14, Issue 6, pp 1217–1231 | Cite as

Spatio-temporal effects of stray hatchery-reared Atlantic salmon Salmo salar on population genetic structure within a 21 km-long Icelandic river system

  • Leó Alexander GudmundssonEmail author
  • Sigurdur Gudjónsson
  • Gudrún Marteinsdóttir
  • Dennis L. Scarnecchia
  • Anna Kristín Daníelsdóttir
  • Christophe Pampoulie
Research Article


Although the tendency of Atlantic salmon Salmo salar to form differentiated populations among rivers and among tributaries within large river systems (>100 km-long) is well documented, much less is known about population structure within small river systems (<30 km-long). In the present study, we investigated the genetic effects of straying of hatchery-reared salmon on population structure and genetic composition within the Ellidaár river system, a small system (21 km total length) in SW Iceland. We analyzed spatial and temporal variation of wild and domesticated samples (farmed and ranched; n = 931) using seven microsatellite loci. Estimates of population differentiation [F ST, genetic tree (D A)] and Bayesian cluster analysis (STRUCTURE) revealed a significant population structure as well as relative long-term temporal stability of the genetic composition in the main river from 1948 to 2005. However, the genetic composition of the tributary populations was unstable and genetically homogenized in recent years. Wild-hatchery hybrids were detected during the influx of strays as well as few years after, suggesting that introgression has changed the genetic composition of the wild populations. More investigations are needed in Iceland and elsewhere on possible fine-scale population differentiation and factors leading to it. Fine-scale population differentiation as observed in the present study has implications for the resolution with which harvest and habitat management of salmon should be conducted. In addition, farming and ranching operations should be located to minimize potential negative effects of strays on wild fish.


Atlantic salmon Population structure River system Introgression Hatchery salmon Temporal stability 



We are grateful to Robin S. Waples for valuable comments and discussion during the process of this study. We are also grateful to the editor and two anonymous reviewers for their many critical comments that considerably improved the manuscript. We thank Sigrídur V. Jónsdóttir and our co-workers at the Institute of Freshwater Fisheries and Marine Research Institute for their assistance and support. This study was supported by Orkuveita Reykjavíkur (Reykjavik Power Company) and the Committee of Agriculture Genetic Resources in Iceland.

Supplementary material

10592_2013_510_MOESM1_ESM.docx (170 kb)
Supplementary material 1 (DOCX 171 kb)


  1. Antonsson T, Árnason F (2011) The Ellidaár River in 2010, studies on fishes of the river system. Institute of Freshwater Fisheries, Report VMST/11030 (in Icelandic)Google Scholar
  2. Antonsson T, Gudjónsson S (2000) The Ellidaár rivers in 1999, studies on fishes of the river system. Institute of Freshwater Fisheries, Report VMST-R/0005 (in Icelandic)Google Scholar
  3. Antonsson T, Gudjónsson S, Pálmason H (1998) Salmon in the Ellidaár River—catch and run statistics. Institute of Freshwater Fisheries, Report VMST-R/98014 (in Icelandic)Google Scholar
  4. Araguas RM, Sanz N, Pla C, García-Marín JL (2004) Breakdown of the brown trout evolutionary history due to hybridization between native and cultivated fish. J Fish Biol 65:28–37. doi: 10.1111/j.0022-1112.2004.00544.x CrossRefGoogle Scholar
  5. Araki H, Cooper B, Blouin MS (2007) Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103. doi: 10.1126/science.1145621 PubMedCrossRefGoogle Scholar
  6. Árnason F, Antonsson T, Einarsson SM (2005) Evaluation of single-pass electric fishing to detect changes in population size of Atlantic salmon (Salmo salar L.) juveniles. Icel Agric Sci 18:67–73Google Scholar
  7. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, MontpellierGoogle Scholar
  8. Birgisson AV, Einarsson K, Zóphóníasson S, Snorrason Á (1999) The catchment of River Ellidaár—water budget and flow characteristics. National Energy Authority, Report OS-99018 (in Icelandic)Google Scholar
  9. Blanco G, Ramos MD, Vázquez E, Sánchez JA (2005) Assessing temporal and spatial variation in wild populations of Atlantic salmon with particular reference to Asturias (Northern Spain) rivers. J Fish Biol 67:169–184. doi: 10.1111/j.0022-1112.2005.00846.x CrossRefGoogle Scholar
  10. Bourret V, O’Reilly PT, Carr JW, Berg PR, Bernatchez L (2011) Temporal change in genetic integrity suggests loss of local adaptation in a wild Atlantic salmon (Salmo salar) population following introgression by farmed escapees. Heredity 106:500–510. doi: 10.1038/hdy.2010.165 PubMedCrossRefGoogle Scholar
  11. Cairney M, Taggart JB, Høyheim B (2000) Characterization of microsatellite and minisatellite loci in Atlantic salmon (Salmo salar L.) and cross-species amplification in other salmonids. Mol Ecol 9:2175–2178. doi: 10.1046/j.1365-294X.2000.105312.x PubMedCrossRefGoogle Scholar
  12. Christie MR, Marine ML, French RA, Blouin MS (2012) Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci USA 109:238–242. doi: 10.1073/pnas.1111073109 PubMedCrossRefGoogle Scholar
  13. Clifford SL, McGinnity P, Ferguson A (1998a) Genetic changes in an Atlantic salmon population resulting from escaped juvenile farm salmon. J Fish Biol 52:118–127. doi: 10.1111/j.1095-8649.1998.tb01557.x CrossRefGoogle Scholar
  14. Clifford SL, McGinnity P, Ferguson A (1998b) Genetic changes in Atlantic salmon (Salmo salar) populations of Northwest Irish rivers resulting from escapes of adult farm salmon. Can J Fish Aquat Sci 55:358–363. doi: 10.1139/f97-229 CrossRefGoogle Scholar
  15. Crozier WW (1993) Evidence of genetic interaction between escaped farmed salmon and wild Atlantic salmon (Salmo salar L.) in a Northern Irish river. Aquaculture 113:19–29. doi: 10.1016/0044-8486(93)90337-X CrossRefGoogle Scholar
  16. Crozier WW (2000) Escaped farmed salmon, Salmo salar L., in the Glenarm River, Northern Ireland: genetic status of the wild population 7 years on. Fish Manag Ecol 7:437–446. doi: 10.1046/j.1365-2400.2000.00219.x CrossRefGoogle Scholar
  17. Daníelsdóttir AK, Marteinsdóttir G, Árnason F, Gudjónsson S (1997) Genetic structure of wild and reared Atlantic salmon (Salmo salar L.) populations in Iceland. ICES J Mar Sci 54:986–997. doi: 10.1016/S1054-3139(97)80003-3 Google Scholar
  18. Dias PC (1996) Sources and sinks in population biology. Trends Ecol Evol 11:326–330. doi: 10.1016/0169-5347(96)10037-9 PubMedCrossRefGoogle Scholar
  19. Dillane E, McGinnity P, Coughlan JP, Cross MC, Eyto ED, Kenchington E, Prodöhl P, Cross TF (2008) Demographics and landscape features determine intrariver population structure in Atlantic salmon (Salmo salar L.): the case of the River Moy in Ireland. Mol Ecol 17:4786–4800. doi: 10.1111/j.1365-294X.2008.03939.x PubMedCrossRefGoogle Scholar
  20. Dittman AH, Quinn TP, Nevitt GA (1996) Timing of imprinting to natural and artificial odors by coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 53:434–442. doi: 10.1139/f95-185 CrossRefGoogle Scholar
  21. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361. doi: 10.1007/s12686-011-9548-7 CrossRefGoogle Scholar
  22. Eldridge WH, Myers JM, Naish KA (2009) Long-term changes in the fine-scale population structure of coho salmon populations (Oncorhynchus kisutch) subject to extensive supportive breeding. Heredity 103:299–309. doi: 10.1038/hdy.2009.69 PubMedCrossRefGoogle Scholar
  23. Ensing D, Prodöhl PA, McGinnity P, Boylan P, O’Maoiléidigh N, Crozier WW (2011) Complex pattern of genetic structuring in the Atlantic salmon (Salmo salar L.) of the River Foyle system in northwest Ireland: disentangling the evolutionary signal from population stochasticity. Ecol Evol 1:359–372. doi: 10.1002/ece3.32 PubMedCrossRefGoogle Scholar
  24. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 0.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  25. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567. doi: 10.1111/j.1755-0998.2010.02847.x PubMedCrossRefGoogle Scholar
  26. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  27. Finnegan AK, Stevens JR (2008) Assessing the long-term genetic impact of historical stocking events on contemporary populations of Atlantic salmon, Salmo salar. Fish Manage Ecol 15:315–326. doi: 10.1111/j.1365-2400.2008.00616.x CrossRefGoogle Scholar
  28. Fleming IA, Jonsson B, Gross MR, Lamberg A (1996) An experimental study of the reproductive behaviour and success of farmed and wild Atlantic salmon (Salmo salar). J Appl Ecol 33:893–905. doi: 10.2307/2404960 CrossRefGoogle Scholar
  29. Fleming IA, Hindar K, Mjölneröd IB, Jonsson B, Balstad T, Lamberg A (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc Lond B 267:1517–1523. doi: 10.1098/rspb.2000.1173 CrossRefGoogle Scholar
  30. Ford JS, Myers RA (2008) A global assessment of salmon aquaculture impacts on wild salmonids. PLoS Biol 6:e33. doi: 10.1371/journal.pbio.0060033 PubMedCrossRefGoogle Scholar
  31. Fraser DJ, Minto C, Calvert AM, Eddington JD, Hutchings JA (2010) Potential for domesticated–wild interbreeding to induce maladaptive phenology across multiple populations of wild Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 67:1768–1775. doi: 10.1139/F10-094 CrossRefGoogle Scholar
  32. Fraser DJ, Weir LK, Bernatchez L, Hansen MM, Taylor EB (2011) Extent and scale of local adaptation in salmonid fishes: review and meta-analysis. Heredity 106:404–420. doi: 10.1038/hdy.2010.167 PubMedCrossRefGoogle Scholar
  33. Friedland KD, MacLean JC, Hansen LP, Peyronnet AJ, Karlsson L, Reddin DG, O’Maoiléidigh N, McCarthy JL (2009) The recruitment of Atlantic salmon in Europe. ICES J Mar Sci 66:289–304. doi: 10.1093/icesjms/fsn210 CrossRefGoogle Scholar
  34. Galvin P, Taggart J, Ferguson A, O’Farrell M, Cross T (1996) Population genetics of Atlantic salmon (Salmo Salar) in the River Shannon system in Ireland: an appraisal using single locus minisatellite (VNTR) probes. Can J Fish Aquat Sci 53:1933–1942. doi: 10.1139/f96-130 CrossRefGoogle Scholar
  35. Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628. doi: 10.1046/j.1365-294x.2000.00909.x PubMedCrossRefGoogle Scholar
  36. Garcia de Leaniz C, Fleming IA, Einum S, Verspoor E, Jordan WC, Consuegra S, Aubin-Horth N, Lajus D, Letcher BH, Youngson AF, Webb JH, Vøllestad LA, Villanueva B, Ferguson A, Quinn TP (2007) A critical review of adaptive genetic variation in Atlantic salmon: implications for conservation. Biol Rev 82:173–211. doi: 10.1111/j.1469-185X.2006.00004.x PubMedCrossRefGoogle Scholar
  37. Gardarsson F (1983) Density, growth and production of salmon (Salmo salar L.) juveniles in the rivers Ellidaá and Hólmsá in Iceland. Cand Scient thesis, University of Oslo (in Norwegian)Google Scholar
  38. Glover KA, Quintela M, Wennevik V, Besnier F, Sørvik AGE, Skaala Ø (2012) Three decades of farmed escapees in the wild: a spatio-temporal analysis of Atlantic salmon population genetic structure throughout Norway. PLoS One 7:e43129. doi: 10.1371/journal.pone.0043129 PubMedCrossRefGoogle Scholar
  39. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version Available from
  40. Gudjónsson T (1989) On activities of the state salmon hatchery operation in Kollafjördur. Origin of the hatchery strain, sales of juveniles, sea ranching and juvenile production. Institute of Freshwater Fisheries, Report VMST-R/89022 (in Icelandic)Google Scholar
  41. Gudjónsson S (1990) Classification of Icelandic watersheds and rivers to explain life history strategies of Atlantic salmon. PhD Dissertation, Oregon State University, CorvallisGoogle Scholar
  42. Gudjónsson S (1991) Occurrence of reared salmon in natural salmon rivers in Iceland. Aquaculture 98:133–142. doi: 10.1016/0044-8486(91)90378-K CrossRefGoogle Scholar
  43. Gudjónsson S, Scarnecchia DL (2009) “Even the evil need a place to live”: wild salmon, salmon farming, and zoning of the Icelandic coastline. Fisheries 34:477–486. doi: 10.1577/1548-8446-34.10.477 CrossRefGoogle Scholar
  44. Guinand B, Scribner KT, Page KS, Burnham-Curtis MK (2003) Genetic variation over space and time: analyses of extinct and remnant lake trout populations in the Upper Great Lakes. Proc R Soc Lond B 270:425–433. doi: 10.1098/rspb.2002.2250 CrossRefGoogle Scholar
  45. Hansen MM, Jensen LF (2005) Sibship within samples of brown trout (Salmo trutta) and implications for supportive breeding. Conserv Genet 6:297–305. doi: 10.1007/s10592-004-7827-5 CrossRefGoogle Scholar
  46. Hansen MM, Nielsen EE, Mensberg K-LD (1997) The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L. Mol Ecol 6:469–474. doi: 10.1046/j.1365-294X.1997.t01-1-00202.x CrossRefGoogle Scholar
  47. Hansen MM, Fraser DJ, Meier K, Mensberg K-LD (2009) Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines. Mol Ecol 18:2549–2562. doi: 10.1111/j.1365-294X.2009.04198.x PubMedCrossRefGoogle Scholar
  48. Heggberget TG, Johnsen BO, Hindar K, Jonsson B, Hansen LP, Hvidsten NA, Jensen AJ (1993) Interaction between wild and cultured Atlantic salmon: a review of the Norwegian experience. Fish Res 18:123–146. doi: 10.1016/0165-7836(93)90044-8 CrossRefGoogle Scholar
  49. Hillbricht-Ilkowska A (1999) Shallow lakes in lowland river systems: role in transport and transformations of nutrients and in biological diversity. Hydrobiologia 408(409):349–358. doi: 10.1023/A:1017034813729 CrossRefGoogle Scholar
  50. Hindar K (1992) Ecological and genetic studies on salmonid populations with emphasis on identifying causes for their variation. Phd Dissertation, University of OsloGoogle Scholar
  51. Hindar K, Ryman N, Utter F (1991) Genetic effects of cultured fish on natural fish populations. Can J Fish Aquat Sci 48:945–957. doi: 10.1139/f91-111 CrossRefGoogle Scholar
  52. Hindar K, Tufto J, Sættem LM, Balstad T (2004) Conservation of genetic variation in harvested salmon populations. ICES J Mar Sci 61:1389–1397. doi: 10.1016/j.icesjms.2004.08.011 CrossRefGoogle Scholar
  53. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332. doi: 10.1111/j.1755-0998.2009.02591.x PubMedCrossRefGoogle Scholar
  54. Jonsson B, Jonsson N (2006) Cultured Atlantic salmon in nature: a review of their ecology and interaction with wild fish. ICES J Mar Sci 63:1162–1181. doi: 10.1016/j.icesjms.2006.03.004 CrossRefGoogle Scholar
  55. Jonsson B, Jonsson N, Hansen LP (2003) Atlantic salmon straying from the River Imsa. J Fish Biol 62:641–657. doi: 10.1046/j.1095-8649.2003.00053.x CrossRefGoogle Scholar
  56. King TL, Kalinowski ST, Schill WB, Spidle AP, Lubinski BA (2001) Population structure of Atlantic salmon (Salmo salar L.): a range-wide perspective from microsatellite DNA variation. Mol Ecol 10:807–821. doi: 10.1046/j.1365-294X.2001.01231.x PubMedCrossRefGoogle Scholar
  57. Langella O (1999) Populations 1.2.32. Population genetic software: individuals or populations distances based on allelic frequencies, phylogenetic trees, file conversions. Available from
  58. Lehtonen PK, Tonteri A, Sendek D, Titov S, Primmer CR (2009) Spatio-temporal genetic structuring of brown trout (Salmo trutta L.) populations within the River Luga, northwest Russia. Conserv Genet 10:281–289. doi: 10.1007/s10592-008-9577-2 CrossRefGoogle Scholar
  59. Marie AD, Bernatchez L, Garant D (2011) Empirical assessment of software efficiency and accuracy to detect introgression under variable stocking scenarios in brook charr (Salvelinus fontinalis). Conserv Genet 12:1215–1227. doi: 10.1007/s10592-011-0224-y CrossRefGoogle Scholar
  60. Martinez JL, Dumas J, Beall E, Garcia-Vazquez E (2001) Assessing introgression of foreign strains in wild Atlantic salmon populations: variation in microsatellites assessed in historic scale collections. Freshw Biol 46:835–844. doi: 10.1046/j.1365-2427.2001.00711.x CrossRefGoogle Scholar
  61. McGinnity P, Prodöhl P, Ferguson A, Hynes R, O’Maoiléidigh N, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc Lond B 270:2443–2450. doi: 10.1098/rspb.2003.2520 CrossRefGoogle Scholar
  62. McGinnity P, Jennings E, deEyto E, Allott N, Samuelsson P, Rogan G, Whelan K, Cross T (2009) Impact of naturally spawning captive-bred Atlantic salmon on wild populations: depressed recruitment and increased risk of climate-mediated extinction. Proc R Soc B 276:3601–3610. doi: 10.1098/rspb.2009.0799 PubMedCrossRefGoogle Scholar
  63. Morris MRJ, Fraser DJ, Heggelin AJ, Whoriskey FG, Carr JW, O’Neil SF, Hutchings JA (2008) Prevalence and recurrence of escaped farmed Atlantic salmon (Salmo salar) in eastern North American rivers. Can J Fish Aquat Sci 65:2807–2826. doi: 10.1139/F08-181 CrossRefGoogle Scholar
  64. Naylor R, Hindar K, Fleming IA, Goldburg R, Williams S, Volpe J, Whoriskey F, Eagle J, Kelso D, Mangel M (2005) Fugitive salmon: assessing the risks of escaped fish from net-pen aquaculture. BioScience 55:427–437. doi:10.1641/0006-3568(2005)055[0427:FSATRO]2.0.CO;2Google Scholar
  65. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170. doi: 10.1007/BF02300753 PubMedCrossRefGoogle Scholar
  66. Neville HM, Isaak DJ, Dunham JB, Thurow RF, Rieman BE (2006) Fine-scale natal homing and localized movement as shaped by sex and spawning habitat in Chinook salmon: insights from spatial autocorrelation analysis of individual genotypes. Mol Ecol 15:4589–4602. doi: 10.1111/j.1365-294X.2006.03082.x PubMedCrossRefGoogle Scholar
  67. Nielsen EE, Hansen MM (2008) Waking the dead: the value of population genetic analyses of historical samples. Fish Fish 9:450–461. doi: 10.1111/j.1467-2979.2008.00304.x CrossRefGoogle Scholar
  68. Nielsen EE, Hansen MM, Loeschcke V (1999a) Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation. Hereditas 130:265–276. doi: 10.1111/j.1601-5223.1999.00265.x CrossRefGoogle Scholar
  69. Nielsen EE, Hansen MM, Loeschcke V (1999b) Genetic variation in time and space: microsatellite analysis of extinct and extant populations of Atlantic salmon. Evolution 53:261–268. doi: 10.2307/2640938 CrossRefGoogle Scholar
  70. O’Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53:2292–2298. doi: 10.1139/f96-192 Google Scholar
  71. Olsen JB, Crane PA, Flannery BG, Dunmall K, Templin WD, Wenburg JK (2011) Comparative landscape genetic analysis of three Pacific salmon species from subarctic North America. Conserv Genet 12:223–241. doi: 10.1007/s10592-010-0135-3 CrossRefGoogle Scholar
  72. Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358. doi: 10.1093/bioinformatics/12.4.357 PubMedGoogle Scholar
  73. Palstra FP, O’Connell MF, Ruzzante MF (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Mol Ecol 16:4504–4522. doi: 10.1111/j.1365-294X.2007.03541.x PubMedCrossRefGoogle Scholar
  74. Parrish DL, Behnke RJ, Gephard SR, McCormick SD, Reeves GH (1998) Why aren’t there more Atlantic salmon (Salmo salar)? Can J Fish Aquat Sci 55:281–287. doi: 10.1139/d98-012 CrossRefGoogle Scholar
  75. Primmer CR, Veselov AJ, Zubchenko A, Poututkin A, Bakhmet I, Koskinen MT (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15:653–666. doi: 10.1111/j.1365-294X.2005.02844.x PubMedCrossRefGoogle Scholar
  76. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  77. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  78. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  79. Ricker WE (1972) Hereditary and environmental factors affecting certain salmonid populations. In: Simon RC, Larkin PA (eds) The stock concept in Pacific salmon. H. R. MacMillan lectures in Fisheries, University of British Columbia, Vancouver, pp 19–160Google Scholar
  80. Rist S (1956) Icelandic fresh waters. Hydrological survey. The State Electricity Authority, Reykjavík (in Icelandic with English summary)Google Scholar
  81. Rist S (1990) Water is needed. Bókaútgáfa Menningarsjóds, Reykjavík (in Icelandic)Google Scholar
  82. Rosenberg NA (2004) DISTRUCT: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138. doi: 10.1046/j.1471-8286.2003.00566.x CrossRefGoogle Scholar
  83. Scarnecchia DL (1983) Age at sexual maturity in Icelandic stocks of Atlantic salmon (Salmo salar). Can J Fish Aquat Sci 40:1456–1468. doi: 10.1139/f83-168 CrossRefGoogle Scholar
  84. Skaala Ø, Wennevik V, Glover KA (2006) Evidence of temporal genetic change in wild Atlantic salmon, Salmo salar L., populations affected by farm escapees. ICES J Mar Sci 63:1224–1233. doi: 10.1016/j.icesjms.2006.04.005 CrossRefGoogle Scholar
  85. Slettan A, Olsaker I, Lie O (1995) Atlantic salmon, Salmo salar, microsatellites at the SSOSL25, SSOSL85, SSOSL311, SSOSL417 loci. Anim Genet 26:281–282PubMedCrossRefGoogle Scholar
  86. Stabell OB (1984) Homing and olfaction in salmonids: a critical review with special reference to the Atlantic salmon. Biol Rev 59:333–388. doi: 10.1111/j.1469-185X.1984.tb00709.x CrossRefGoogle Scholar
  87. Taggart JB, Hynes RA, Prodöhl PA, Ferguson A (1992) A simplified protocol for routine total DNA isolation from salmonid fishes. J Fish Biol 40:963–965. doi: 10.1111/j.1095-8649.1992.tb02641.x CrossRefGoogle Scholar
  88. Taylor EB (1991) A review of local adaptation in Salmonidae, with particular reference to Pacific and Atlantic salmon. Aquaculture 98:185–207. doi: 10.1016/0044-8486(91)90383-I CrossRefGoogle Scholar
  89. Utter F (2001) Patterns of subspecific anthropogenic introgression in two salmonid genera. Rev Fish Biol Fish 10:265–279. doi: 10.1023/A:1016686415022 CrossRefGoogle Scholar
  90. Vähä J-P, Erkinaro J, Niemelä E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654. doi: 10.1111/j.1365-294X.2007.03329.x PubMedCrossRefGoogle Scholar
  91. Vähä J-P, Erkinaro J, Niemelä E, Primmer CR (2008) Temporally stable genetic structure and low migration in an Atlantic salmon population complex: implications for conservation and management. Evol Appl 1:137–154. doi: 10.1111/j.1752-4571.2007.00007.x CrossRefGoogle Scholar
  92. Van Houdt JKJ, Pinceel J, Flamand MC, Briquet M, Dupont E, Volckaert FAM, Baret PV (2005) Migration barriers protect indigenous brown trout (Salmo trutta) populations from introgression with stocked hatchery fish. Conserv Genet 6:175–191. doi: 10.1007/s10592-004-7822-x CrossRefGoogle Scholar
  93. Verspoor E, Beardmore JA, Consuegra S, García de Leániz C, Hindar K, Jordan WC, Koljonen M-L, Mahkrov AA, Paava T, Sánchez JA, Skaala Ø, Titov S, Cross TF (2005) Population structure in the Atlantic salmon: insights from 40 years of research into genetic protein variation. J Fish Biol 67:3–54. doi: 10.1111/j.1095-8649.2005.00838.x CrossRefGoogle Scholar
  94. Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979. doi: 10.1534/genetics.166.4.1963 PubMedCrossRefGoogle Scholar
  95. Wang J, Santure AW (2009) Parentage and sibship inference from multilocus genotype data under polygamy. Genetics 181:1579–1594. doi: 10.1534/genetics.108.100214 PubMedCrossRefGoogle Scholar
  96. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  97. Williamson KS, May B (2005) Homogenization of fall-run Chinook salmon gene pools in the Central Valley of California, USA. N Am J Fish Manage 25:993–1009. doi: 10.1577/M04-136.1 CrossRefGoogle Scholar
  98. Yamamoto Y, Hino H, Ueda H (2010) Olfactory imprinting of amino acids in lacustrine Sockeye salmon. PLoS One 5:e8633. doi: 10.1371/journal.pone.0008633 PubMedCrossRefGoogle Scholar
  99. Young DB, Woody CA (2007) Dynamic in-lake spawning migrations by female sockeye salmon. Ecol Freshw Fish 16:155–164. doi: 10.1111/j.1600-0633.2006.00207.x Google Scholar
  100. Youngson AF, Jordan WC, Hay DW (1994) Homing of Atlantic salmon (Salmo salar L.) to a tributary spawning stream in a major river catchment. Aquaculture 121:259–267. doi: 10.1016/0044-8486(94)90025-6 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Leó Alexander Gudmundsson
    • 1
    Email author
  • Sigurdur Gudjónsson
    • 1
  • Gudrún Marteinsdóttir
    • 2
  • Dennis L. Scarnecchia
    • 3
  • Anna Kristín Daníelsdóttir
    • 4
    • 5
  • Christophe Pampoulie
    • 4
  1. 1.Institute of Freshwater FisheriesReykjavíkIceland
  2. 2.Department of BiologyUniversity of IcelandReykjavíkIceland
  3. 3.Department of Fish and Wildlife SciencesUniversity of IdahoMoscowUSA
  4. 4.Marine Research InstituteReykjavíkIceland
  5. 5.Matís LtdReykjavíkIceland

Personalised recommendations