Conservation Genetics

, Volume 14, Issue 6, pp 1185–1192 | Cite as

The Meeting of Waters, a possible shelter of evolutionary significant units for Amazonian fish

  • Alba Ardura
  • Vanessa Gomes
  • Ana R. Linde
  • Josino C. Moreira
  • Jose L. Horreo
  • Eva Garcia-Vazquez
Research Article

Abstract

Identification of priority conservation areas is crucial for safeguarding freshwater ecosystems. Occurrence of unique populations and/or evolutionary significant units for key species is one of the most frequent reasons for protecting a region or location. In this study we have studied two of the most important fisheries resources of the Amazon basin, Curimata and Tambaqui, from different areas, in order to identify common zones of special diversity. Employing the Barcoding cytochrome oxidase I gene as a genetic tool, we have detected a clear differentiation of the populations inhabiting the Meeting of Waters and the rest of the basin for both species. This area corresponds to the confluence of the Solimões and the Negro rivers, of different physicochemical water characteristics, at the Brazilian city of Manaus in central Amazonas. The Meeting of Waters area (near Manaus) could be recommended as a potential area subject of special management, given its apparent role as a shelter for evolutionary significant units.

Keywords

Amazon river Meeting of Waters Mitochondrial DNA Prochilodus nigricans Colossoma macropomum Population structure 

References

  1. Albert JS, Crampton WG (2010) The geography and ecology of diversification in neotropical freshwaters. Nat Educ Knowl 1(10):13Google Scholar
  2. Albert JS, Reis RE (2011) Historical biogeography of neotropical freshwater fishes. Berkeley, CA: University of California Press (in press)Google Scholar
  3. Araújo-Lima CARM, Ruffino ML (2004) Migratory fishes of the Brazilian Amazon. In: Carolsfield, J, Harvey B, Ross C and Baer A (eds) Migratory fishes of South America. biology, fisheries, and conservation status. Co-published by World Fisheries Trust/World Bank/IDRC, Victoria, pp 233–302Google Scholar
  4. Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedCrossRefGoogle Scholar
  5. Barson NJ, Cable J, Van Oosterhout C (2009) Population genetic analysis of microsatellite variation of guppies (Poecilia reticulata) in Trinidad and Tobago: evidence for a dynamic source-sink metapopulation structure, founder events and population bottlenecks. J Evol Biol 22(3):485–497PubMedCrossRefGoogle Scholar
  6. Batista V, Petrere Junior M (2007) Spatial and temporal distribution of fishing resources exploited by the Manaus fishing fleet, Amazonas, Brazil. Braz J Biol 67:651–656PubMedCrossRefGoogle Scholar
  7. Beerli P, Palczewski M (2010) Unified framework to evaluate panmixia and migration direction among multiple sampling locations. Genetics 185:313–326PubMedCrossRefGoogle Scholar
  8. Colonnello G (1991) Observaciones fenológicas y producción de hojarasca en un bosque inundable (Várzea) del Río Orinoco. Interciencia 16:202–208Google Scholar
  9. Dorea JG (2003) Fish are central in the diet of Amazonian riparians: should we worry about their mercury concentrations? Environ Res 92:232–244PubMedCrossRefGoogle Scholar
  10. Estoup A, Largiader CR, Perrot E, Chourrout D (1996) Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes. Mol Mar Biol Biotech 5:295–298Google Scholar
  11. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  12. Farias IP, Torrico JP, Garcia-Davila C, Santos MCF, Hrbek T, Renno J-F (2010) Are rapids a barrier for floodplain fishes of the Amazon Basin? A demographic study of the keystone floodplain species Colossoma macropomum (Teleostei: Characiformes). Mol Phyl Evol 56:1129–1135CrossRefGoogle Scholar
  13. Fu Y-X (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  14. Gram S, Kvist LP, Caseres A (2001) The economic importance of products extracted from amazonian flood plain forests. Ambio 30:365–368PubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sympos Ser 41:95–98Google Scholar
  16. Hänfling B, Weetman D (2006) Concordant genetic estimators of migration reveal anthropogenically enhanced source-sink population structure in the river sculpin. Cottus gobio. Genetics 173(3):1487–1501CrossRefGoogle Scholar
  17. Harpending H (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  18. Horreo JL (2012) “Representative genes”, is it OK the use a small amount of data to obtain a phylogeny that is at least close to the true tree? J Evol Biol. doi:10.1111/j.1420-9101.2012.02622.x Google Scholar
  19. Horreo JL, Martinez JL, Ayllon F, Pola IG, Monteoliva JA, Héland M, Garcia-Vazquez E (2011) Impact of habitat fragmentation on the genetics of populations in dendritic landscapes. Fresh Biol 56:2567–2579CrossRefGoogle Scholar
  20. Hrbek T, Crossa M, Farias IP (2007) Conservation strategies for Arapaima gigas (Schinz, 1822) and the Amazonian várzea ecosystem. Braz J Biol 67(4):909–917PubMedCrossRefGoogle Scholar
  21. Hughes JM, Schmidt DJ, Finn DS (2009) Genes instreams: using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59(7):573–583CrossRefGoogle Scholar
  22. Kinlan BP, Gaines DD (2003) Propagule dispersal in marine and terrestrial communities: a community perspective. Ecol 84:2007–2020CrossRefGoogle Scholar
  23. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76(2):173–190PubMedCrossRefGoogle Scholar
  24. Martin AR, Da Silva VMF, Salmon DL (2004) Riverine habitat preferences of botos (Inia geoffrensis) and tucuxis (Sotalia fluviatilis) in the Central Amazon. Mar Mamm Sci 20(2):189–200CrossRefGoogle Scholar
  25. Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10(6):1509–1518CrossRefGoogle Scholar
  26. Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geog Anal 3:245–261Google Scholar
  27. Moritz C (1994) Defining “evolutionary significant units” for conservation. Trends Ecol Evol 9(10):373–375PubMedCrossRefGoogle Scholar
  28. Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22(1):11–16PubMedCrossRefGoogle Scholar
  29. Quintero-Pinto LG (2003) Especies ícticas amazónicas promisorias para la acuicultura nacional En: Colombia Evento: IV Seminario Internacional de Acuicultura y I congreso de investigaciones acuícolasGoogle Scholar
  30. Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedCrossRefGoogle Scholar
  31. Reeves GH, Benda LE, Burnett KM, Bisson PA, Sedell JR (1995) A disturbance-based ecosystem approach to maintaining and restoring freshwater habitat of evolutionary significant units of anadromous salmonids in the Pacific Northwest. Am Fish S S 17:334–349Google Scholar
  32. Santos MCF, Ruffino ML, Farias IP (2007) High levels of genetic variability and panmixia of the tambaqui, Colossoma macropomum (Cuvier, 1816) in the main channel of the Amazon River. J Fish Biol 71:33–44CrossRefGoogle Scholar
  33. Schmidt GW (1976) Primary production of phytoplankton in three types of Amazonian waters. IV. On the primary productivity of phytoplankton in a bay of the lower Rio Negro (Amazonas, Brazil). Amazoniana 5:517–528Google Scholar
  34. Silva EA, Sterwart DJ (2006) Age structure, growth and survival rates of the commercial fish Prochilodus nigricans (bocachico) in North-eastern Ecuador. Environ Biol Fish 77:63–77CrossRefGoogle Scholar
  35. Sivasundar A, Bermingham E, Orti G (2008) Population structure and biogeography of migratory freshwater fishes (Prochilodus: characiformes) in major South American rivers. Mol Ecol 10:407–417CrossRefGoogle Scholar
  36. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123(3):597–601PubMedGoogle Scholar
  37. Thompson JD, Higgins DG, Gibson TJ (1994) Clustal-W, improving the sensitive of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucl Acid Res 22:4673–4680CrossRefGoogle Scholar
  38. Tufto J, Hindar K (2003) Effective size in management and conservation of subdivided populations. J Theor Biol 222(3):273–281PubMedCrossRefGoogle Scholar
  39. Waples RS (1995) Evolutionarily significant units and the conservation of biological diversity under the endangered species act. Am Fish Soc Symp 17:8–27Google Scholar
  40. Ward RD, Zemlak TS, Innes BH, Last PD, Hebert PDN (2005) DNA Barcoding Australia’s fish species. Proc Roy Soc B Biol 360:1847–1857Google Scholar
  41. Ziburski A (1990) Ausbreitungs-und Reproduktionsbiologie einiger Baumarten der amazoniaschen Uberschwemmungs-walder. Ph.D. Thesis, University of Hamburg, Hamburg. 112 ppGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alba Ardura
    • 1
  • Vanessa Gomes
    • 2
  • Ana R. Linde
    • 2
  • Josino C. Moreira
    • 2
  • Jose L. Horreo
    • 1
  • Eva Garcia-Vazquez
    • 1
  1. 1.Departamento de Biologia FuncionalUniversidad de OviedoOviedoSpain
  2. 2.Laboratorio de ToxicologiaEscola Nacional de Saúde Pública, Fundaçao Oswaldo CruzRio de JaneiroBrazil

Personalised recommendations