Conservation Genetics

, Volume 14, Issue 5, pp 1099–1110 | Cite as

Landscape heterogeneity predicts gene flow in a widespread polymorphic bumble bee, Bombus bifarius (Hymenoptera: Apidae)

  • Jeffrey D. Lozier
  • James P. Strange
  • Jonathan B. Koch
Research Article

Abstract

Bombus bifarius is a widespread bumble bee that occurs in montane regions of western North America. This species has several major color pattern polymorphisms and shows evidence of genetic structuring among regional populations, and the taxonomic status of regional populations has repeatedly been debated. We test whether observed structure is evidence for discrete gene flow barriers that might indicate isolation or instead reflects clinal variation associated with spatially limited dispersal in a complex landscape. We first consider color pattern variation and identify geographical patterns of B. bifarius color variation using cluster analysis. We then use climate data and a comprehensive set of B. bifarius natural history records with an existing genetic data set to model the distribution of environmentally suitable habitat in western North America and predict pathways of potential gene flow using circuit theory. Resistance distances among populations that incorporate environmental suitability information predict patterns of genetic structure much better than geographic distance or Bayesian clustering alone. Results suggest that there may not be barriers to gene flow warranting further taxonomic considerations, but rather that the arrangement of suitable habitat at broad scales limits dispersal sufficiently to explain observed levels of population differentiation in B. bifarius.

Keywords

Landscape genetics Isolation by distance Isolation by resistance Environmental niche model Microsatellites Circuit theory Color polymorphism 

Supplementary material

10592_2013_498_MOESM1_ESM.docx (361 kb)
Supplementary material 1 (DOCX 360 kb)

References

  1. Abellán P, Arribas P, Svenning J-C (2011) Geological habitat template overrides late quaternary climate change as a determinant of range dynamics and phylogeography in some habitat-specialist water beetles. J Biogeogr 39:970–983CrossRefGoogle Scholar
  2. Aldridge G, Inouye DW, Forrest JRK, Barr WA, Miller-Rushing AJ (2011) Emergence of a mid-season period of low floral resources in a montane meadow ecosystem associated with climate change. J Ecol 99:905–913CrossRefGoogle Scholar
  3. Apodaca JJ, Rissler LJ, Godwin JC (2012) Population structure and gene flow in a heavily disturbed habitat: implications for the management of the imperilled Red Hills salamander (Phaeognathus hubrichti). Cons Gen 13:913–923CrossRefGoogle Scholar
  4. Balkenhol N, Waits LP, Dezzani RJ (2009) Statistical approaches in landscape genetics: an evaluation of methods for linking landscape and genetic data. Ecography 32:818–830CrossRefGoogle Scholar
  5. Bartomeus I, Ascher JS, Wagner D, Danforth BN, Colla S, Kornbluth S, Winfree R (2011) Climate-associated phenological advances in bee pollinators and bee-pollinated plants. P Natl Acad Sci-Biol 108:20654–20659CrossRefGoogle Scholar
  6. Cameron SA, Lozier JD, Strange JP, Koch JB, Cordes N, Solter LF, Griswold TL (2011) Patterns of widespread decline in North American bumble bees. P Natl Acad Sci-Biol 108:662–667CrossRefGoogle Scholar
  7. Carolan JC, Murray TE, Fitzpatrick Ú, Crossley J, Schmidt H, Cederberg B, McNally L, Paxton RJ, Williams PH, Brown MJF (2012) Colour patterns do not diagnose species: quantitative evaluation of a DNA barcoded cryptic bumblebee complex. PLoS One 7:e29251PubMedCrossRefGoogle Scholar
  8. Chan LM, Brown JL, Yoder AD (2011) Integrating statistical genetic and geospatial methods brings new power to phylogeography. Mol phylogenet evol 59:523–537PubMedCrossRefGoogle Scholar
  9. Cushman SA, Landguth EL (2010) Spurious correlations and inference in landscape genetics. Mol Ecol 19:3592–3602PubMedCrossRefGoogle Scholar
  10. Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499PubMedCrossRefGoogle Scholar
  11. Darvill B, O’Connor S, Lye GC, Waters J, Lepais O, Goulson D (2010) Cryptic differences in dispersal lead to differential sensitivity to habitat fragmentation in two bumblebee species. Mol Ecol 19:53–63PubMedCrossRefGoogle Scholar
  12. Davis AK, Cope N, Smith A, Solensky MJ (2007) Wing color predicts future mating success in male Monarch butterflies. Ann Entomol Soc Am 100:339–344CrossRefGoogle Scholar
  13. Devitt TJ, Devitt SEC, Hollingsworth BD, McGuire JA, Moritz C (2013) Montane refugia predict population genetic structure in the Large-blotched Ensatina salamander. Mol Ecol online early. doi:10.1111/mec.12196 Google Scholar
  14. Duennes MA, Lozier JD, Hines HM, Cameron SA (2012) Geographical patterns of genetic divergence in the widespread Mesoamerican bumble bee Bombus ephippiatus (Hymenoptera: Apidae). Mol Phyl Evol 64:219–231CrossRefGoogle Scholar
  15. Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Ann Rev Ecol Evol S 40:677–697CrossRefGoogle Scholar
  16. Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2010) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57CrossRefGoogle Scholar
  17. Estoup A, Soignac M, Cornuet JM, Goudet J, Scholl A (1996) Genetic differentiation of continental and island populations of Bombus terrestris (hymenoptera: apidae) in Europe. Mol Ecol 5:19–31PubMedCrossRefGoogle Scholar
  18. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  19. Foll M, Gaggiotti O (2006) Identifying the environmental factors that determine the genetic structure of populations. Genetics 174:875–891PubMedCrossRefGoogle Scholar
  20. Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters or isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  21. Gaggiotti OE, Foll M (2010) Quantifying population structure using the F-model. Mol Ecol Res 10:821–830CrossRefGoogle Scholar
  22. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19Google Scholar
  23. Goulson D (2010) Impacts of non-native bumblebees in Western Europe and North America. Appl Entomol Zool 45:7–12CrossRefGoogle Scholar
  24. Goulson D, Lepais O, O’Connor S, Osborne JL, Sanderson RA, Cussans J, Goffe L et al (2010) Effects of land use at a landscape scale on bumblebee nest density and survival. J Appl Ecol 47:1207–1215CrossRefGoogle Scholar
  25. Goulson D, Kaden JC, Lepais O, Lye GC, Darvill B (2011) Population structure, dispersal and colonization history of the garden bumblebee Bombus hortorum in the Western Isles of Scotland. Conserv Genet 12:867–879CrossRefGoogle Scholar
  26. Guillot G (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  27. Guillot G, Leblois R, Coulon A, Frantz AC (2009) Statistical methods in spatial genetics. Mol Ecol 18:4734–4756PubMedCrossRefGoogle Scholar
  28. Harder LD (1986) Influences on the density and dispersion of bumble bee nests (Hymenoptera: Apidae). Ecography 9:99–103CrossRefGoogle Scholar
  29. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  30. Hill JK, Griffiths HM, Thomas CD (2010) Climate change and evolutionary adaptations at species’ range margins. Ann Rev Entomol 56:143–159CrossRefGoogle Scholar
  31. Hutchison DW, Templeton AR (1999) Correlation of pairwise genetic and geographic distance measures: Inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution 53:1898CrossRefGoogle Scholar
  32. Jha S, Kremen C (2013) Urban land use limits regional bumble bee gene flow. Mol Ecol 22:2483–2495 In pressPubMedCrossRefGoogle Scholar
  33. Jiggins CD, Naisbit RE, Coe RL, Mallet J (2001) Reproductive isolation caused by colour pattern mimicry. Nature 411:302–305PubMedCrossRefGoogle Scholar
  34. Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026PubMedCrossRefGoogle Scholar
  35. Knight ME, Osborne JL, Sanderson RA, Hale RJ, Martin AP, Goulson D (2009) Bumblebee nest density and the scale of available forage in arable landscapes. Insect Conserv Diver 2:116–124CrossRefGoogle Scholar
  36. Koch JB, Strange JP (2009) Constructing a species database and historic range maps for North American bumble bees (Bombus sensu stricto Latreille) to inform conservation decisions. Uludag Bee Journal 9:97–108Google Scholar
  37. Koch J, Strange JP, Williams P (2012) Bumble bees of the Western United States. USDA Forest Service Research NotesGoogle Scholar
  38. Landguth EL, Fedy BC, Oyler-McCance SJ, Garey AL, Emel SL, Mumma M, Wagner HH, Fortin M-J, Cushman SA (2011) Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol Ecol Res 12:276–284CrossRefGoogle Scholar
  39. Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Cons Gen 7:295–302CrossRefGoogle Scholar
  40. Leaché AD (2011) Multi-locus estimates of population structure and migration in a fence lizard hybrid zone. PLoS ONE 6:e25827. doi:10.1371/journal.pone.0025827 PubMedCrossRefGoogle Scholar
  41. Legendre P, Fortin M-J (2010) Comparison of the Mantel test and alternative approaches for detecting complex multivariate relationships in the spatial analysis of genetic data. Mol Ecol Res 10:831–844CrossRefGoogle Scholar
  42. Lozier JD, Strange JP, Stewart IJ, Cameron SA (2011) Patterns of range-wide genetic variation in six North American bumble bee (Apidae: Bombus) species. Mol Ecol 23:4870–4888CrossRefGoogle Scholar
  43. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends in Ecol Evol 18:189–197CrossRefGoogle Scholar
  44. McCain CM, Colwell RK (2011) Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol Lett 14:1236–1245PubMedCrossRefGoogle Scholar
  45. McRae BH (2006) Isolation by resistance. Evolution 60:1551–1561PubMedGoogle Scholar
  46. McRae BH, Beier P (2007) Circuit theory predicts gene flow in plant and animal populations. P Natl Acad Sci-Biol 104:19885–19890CrossRefGoogle Scholar
  47. McRae BH, Dickson BG, Keitt TH, Shah VB (2008) Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712–2724PubMedCrossRefGoogle Scholar
  48. Murphy MA, Evans JS, Storfer A (2010) Quantifying Bufo boreas connectivity in Yellowstone National Park with landscape genetics. Ecology 91:252–261PubMedCrossRefGoogle Scholar
  49. Orozco-terWengel P, Corander J, Schlötterer C (2011) Genealogical lineage sorting leads to significant, but incorrect Bayesian multilocus inference of population structure. Mol Ecol 20:1108–1121PubMedCrossRefGoogle Scholar
  50. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  51. R Core Team (2012) R A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/
  52. Rasmont P, Coppée A, Michez D, De Meulemeester T (2008) An overview of the Bombus terrestris (L. 1758) subspecies (Hymenoptera: Apidae). Ann Soc Entomol Fr 44:243–250Google Scholar
  53. Raufaste N, Rousset F (2001) Are partial Mantel tests adequate? Evolution 55:1703–1705PubMedGoogle Scholar
  54. Rissler L, Apodaca J (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the black salamander (Aneides flavipunctatus). Syst Biol 56:924–942PubMedCrossRefGoogle Scholar
  55. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  56. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  57. Sakagami SF (1976) Specific differences in the bionomic characters of bumblebees. A comparative review. Jour Fac Sci Hokkaido Univ Seri VI, Zool 20:390–447Google Scholar
  58. Schwartz MK, Copeland JP, Anderson NJ, Squires JR, Inman RM, Mckelvey KS, Pilgrim KL, Waits LP, Cushman SA (2009) Wolverine Gene Flow across a Narrow Climatic Niche. Ecology 90:3222–3232PubMedCrossRefGoogle Scholar
  59. Shah VB McRae BH (2008) Circuitscape: a tool for landscape ecology. Proceedings of the 7th Python in Science Conference (SciPy 2008):62–65Google Scholar
  60. Slatkin M (1993) Isolation by distance in equilibrium and non-equilibrium populations. Evolution 47:264–279CrossRefGoogle Scholar
  61. Stephen WP (1957) Bumble Bees of Western America (Hymenoptera: Apoidea). Technical Bulletin 40, Agricultural Experiment Station, Oregon State College, Corvallis, OR, USAGoogle Scholar
  62. Storfer A, Murphy MA, Evans JS, Goldberg CS, Robinson S, Spear SF, Dezzani R, Delmelle E, Vierling L, Waits LP (2007) Putting the “landscape” in landscape genetics. Heredity 98:128–142PubMedCrossRefGoogle Scholar
  63. Storfer A, Murphy MA, Spear SF, Holderegger R, Waits LP (2010) Landscape genetics: where are we now? Mol Ecol 19:3496–3514PubMedCrossRefGoogle Scholar
  64. Strange JP (2010) Nest initiation in three North American bumble bees (Bombus): gyne number and presence of honey bee workers influence establishment success and colony size. J Insect Sci 10:1–11CrossRefGoogle Scholar
  65. Thorp RW, Horning DSJ, Dunning LL (1983) Bumble bees and cuckoo bumble bees of California. Bulletin of the California Insect Survey 23. University of California Press, Berkeley CAGoogle Scholar
  66. Viereck HL, Cockerell TDA, Titus ESG, Crawford JC Jr, Swenk MH (1904) Synopsis of bees of Oregon. Washington and Vancouver. Can Entomol 36(4):93–100CrossRefGoogle Scholar
  67. Warren DL (2012) In defense of “niche modeling”. Trends Ecol Evol 27:497–500PubMedCrossRefGoogle Scholar
  68. Wasserman TN, Cushman SA, Schwartz MK, Wallin DO (2010) Spatial scaling and multi-model inference in landscape genetics: Martes americana in northern Idaho. Landscape Ecol 25:1601–1612CrossRefGoogle Scholar
  69. Widmer A, Schmid-Hempel P (1999) The population genetic structure of a large temperate pollinator species, Bombus pascuorum (Scopoli) (Hymenoptera: Apidae). Mol Ecol 8:387–398PubMedCrossRefGoogle Scholar
  70. Widmer A, Schmid-Hempel P, Estoup A, Scholl A (1998) Population genetic structure and colonization history of Bombus terrestris s.l. (Hymenoptera: Apidae) from the Canary Islands and Madeira. Heredity 81:563–572CrossRefGoogle Scholar
  71. Williams PH (1986) Environmental change and the distributions of British bumble bees (Bombus Latr.). Bee World 67:50–61Google Scholar
  72. Williams P (2007) The distribution of bumblebee colour patterns worldwide: possible significance for thermoregulation, crypsis, and warning mimicry. Biol J Linn Soc 92:97–118CrossRefGoogle Scholar
  73. Williams PH, Osborne JL (2009) Bumblebee vulnerability and conservation world-wide. Apidologie 40:367–387CrossRefGoogle Scholar
  74. Williams PH, Brown MJF, Carolan JC, An J, Goulson D et al (2012a) Unveiling cryptic species of the bumblebee subgenus Bombus s. str. worldwide with COI barcodes (Hymenoptera: Apidae). Syst Biodivers 10:21–56CrossRefGoogle Scholar
  75. Williams PH, An J, Brown MJF, Carolan JC, Goulson D, Huang J, Ito M (2012b) Cryptic bumblebee species: consequences for conservation and the trade in greenhouse pollinators. PLoS ONE 7:e32992PubMedCrossRefGoogle Scholar
  76. Wilson RJ, Gutiérrez D, Gutiérrez J, Martínez D, Agudo R, Monserrat VJ (2005) Changes to the elevational limits and extent of species ranges associated with climate change. Ecol Lett 8(11):1138–1146PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jeffrey D. Lozier
    • 1
  • James P. Strange
    • 2
  • Jonathan B. Koch
    • 2
    • 3
  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.United States Department of Agriculture-Agricultural Research ServicePollinating Insects Research Unit, Utah State UniversityLoganUSA
  3. 3.Department of BiologyUtah State UniversityLoganUSA

Personalised recommendations