Conservation Genetics

, Volume 14, Issue 5, pp 1009–1018 | Cite as

Genetic data confirm critical status of the reintroduced Dinaric population of Eurasian lynx

  • Magda Sindičić
  • Primož Polanc
  • Tomislav GomerčićEmail author
  • Maja Jelenčič
  • Đuro Huber
  • Peter Trontelj
  • Tomaž Skrbinšek
Research Article


Eurasian lynx (Lynx lynx) reintroduction to the Dinaric Mountains is considered one of the most successful reintroductions of a large predator. Six reintroduced animals founded the population, which rapidly expanded from Slovenia, through Croatia, and all the way to Bosnia and Herzegovina. However, a decrease of the population size has been observed during the last 10–15 years. Considering that possible inbreeding depression would be additive to threats like poaching, traffic mortality and prey base depletion, another extinction of this species from the Dinaric Mountains is a real possibility. We analyzed 204 samples collected between 1979 and 2010 using twenty microsatellite loci and 900-bp mitochondrial DNA control region sequence to evaluate conservation genetics aspects of this endangered population. Both markers confirmed low genetic variability of the Dinaric lynx population, and considerable effective inbreeding (0.3) compared to the source Carpathian population. Our analysis of effective population size and microsatellite variability supported field observations of decreasing population number. As a natural recolonization is a very remote possibility, we recommend population augmentation from a large source population.


Lynx lynx Microsatellite Control region Inbreeding Effective population size 



We are grateful to Vedran Slijepčević, Miha Krofel, Josip Tomaić, Josip Kusak, Franc Kljun, Marko Jonozovič, Hubert Potočnik and Ivan Kos for their help with obtaining the samples. Carlos Fernandes gave us valuable comments for data analysis. This research was in part supported by the Interreg IIIA project “Transboundary cooperation in management, conservation and research of the Dinaric lynx population”. Further, it was supported by the Slovenian Research Agency Project L1-6484 and co-funded by the Environmental Agency of the Republic of Slovenia, the Ministry of Agriculture of the Republic of Slovenia and the Institute of the Republic of Slovenia for Nature Conservation. Also we are grateful for financial support provided by Croatian State Institute for Nature Protection, Croatian Environmental protection and energy efficiency fund, and Carlsberg Croatia.

Supplementary material

10592_2013_491_MOESM1_ESM.xls (14 kb)
Supplementary material 1 (XLS 14 kb)


  1. Adams JR, Waits LP (2007) An efficient method for screening faecal DNA genotypes and detecting new individuals and hybrids in the red wolf (Canis rufus) experimental population area. Conserv Genet 8:123–131CrossRefGoogle Scholar
  2. Barker JSF (2011) Effective population size of natural populations of Drosophila buzzatii, with a comparative evaluation of nine methods of estimation. Mol Ecol 20:4452–4471PubMedCrossRefGoogle Scholar
  3. Bensch S, Andrén H, Hansson B, Pedersen HC, Sand H, Sejberg D, Wabakken P, Åkesson M, Liberg O (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS One 1:e72. doi: 10.1371/journal.pone.0000072 PubMedCrossRefGoogle Scholar
  4. Breitenmoser U, Breitenmoser-Wursten C, Capt S (1998) Re-introduction and present status of lynx (Lynx lynx) in Switzerland. Hystrix 10:17–30Google Scholar
  5. Breitenmoser-Würsten C, Obexer-Ruff G (2003) Population and conservation genetics of two re-introduced lynx (Lynx lynx) populations in Switzerland: a molecular evaluation 25 years after translocation. Progress report, KORA Bericht, BernGoogle Scholar
  6. Broquet T, Petit E (2004) Quantifying genotyping errors in noninvasive population genetics. Mol Ecol 13:3601–3608PubMedCrossRefGoogle Scholar
  7. Butler JM, David VA, O’Brien SJ, Menotti-Raymond M (2002) The MeowPlex: a new DNA test using tetranucleotide STR markers for the domestic cat. Profiles DNA 5:7–10Google Scholar
  8. Carmichael LE, Clark W, Strobeck C (2000) Development and characterization of microsatellite loci from lynx (Lynx canadiensis), and their use in other felids. Mol Ecol 9:2197–2199Google Scholar
  9. Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205PubMedCrossRefGoogle Scholar
  10. Chybicki IJ, Burczyk J (2009) Simultaneous estimation of null alleles and inbreeding coefficients. J Hered 100:106–113PubMedCrossRefGoogle Scholar
  11. Clark JD, Huber D, Servheen C (2002) Bear reintroductions: lessons and challenges: invited paper. Ursus 13:335–345Google Scholar
  12. Čop J (1987) Propagation pattern of re-introduced population of lynx (Lynx lynx L) in Yugoslavia (1973 Slovenia—Kocevsko) and its impact on the ungulate community. In: Atti del convegno Reintroduzione dei predatori nele aree protette. Torino Italy, pp 83–91Google Scholar
  13. Čop J, Frković A (1998) The reintroduction of the lynx in Slovenia and its present status in Slovenia and Croatia. Hystrix 10:65–76Google Scholar
  14. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, New YorkGoogle Scholar
  15. Davoli F, Schmidt K, Kowalczyk R, Randi E (2012) Hair snaring and molecular genetic identification for reconstructing the spatial structure of Eurasian lynx populations. Mammal Biol. doi: 10.1016/j.mambio.2012.06.003 Google Scholar
  16. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  17. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  18. Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675CrossRefGoogle Scholar
  19. Frankham R (2009) Genetic considerations in reintroduction programmes for top-order, terrestrial predators. In: Hayward MW, Somers M (eds) Reintroduction of top-order predators. Blackwell, Oxford, pp 371–382 CrossRefGoogle Scholar
  20. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  21. Franklin IR, Frankham R (1998) How large must populations be to retain evolutionary potential? Animal Conserv 1:69–70CrossRefGoogle Scholar
  22. Frković A (2001) Ris (Lynx lynx L.) u Hrvatskoj—naseljavanje, odlov i brojnost (1974–2000). Šumarski list 11–12:625–634Google Scholar
  23. Gillespie JH (2004) Population genetics, a concise guide, 2nd edn. The Johns Hopkins University Press, BaltimoreGoogle Scholar
  24. Gomerčić T, Gužvica G, Đuras Gomerčić M, Frković A, Pavlović D, Kusak J, Sindičić M, Huber Đ (2009) Variation in teeth number, teeth and skull disorders in Eurasian lynx, Lynx lynx from Croatia. Folia Zool 58:57–65Google Scholar
  25. Gomerčić T, Sindičić M, Đuras Gomerčić M, Gužvica G, Frković A, Pavlović D, Kusak J, Galov A, Huber Đ (2010) Cranial morphometry of the Eurasian lynx (Lynx lynx L.) from Croatia. Vet Arch 80:393–410Google Scholar
  26. Goudet J (1995) FSTAT (vers. 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  27. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices version 2.9.3. Updated from Goudet (1995)
  28. Gugolz D, Bernasconi MV, Breitenmoser-Würsten C, Wandeler P (2008) Historical DNA reveals the phylogenetic position of the extinct Alpine lynx. J Zool (Lond) 275:201–208CrossRefGoogle Scholar
  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/97/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  30. Hellborg L, Walker CW, Rueness EK, Stacy JE, Kojola I, Valdmann H, Vila C, Zimmermann B, Jakobsen KS, Ellegren H (2002) Differentiation and levels of genetic variation in northern European lynx (Lynx lynx) populations revealed by microsatellites and mitochondrial DNA analysis. Conserv Genet 3:97–111CrossRefGoogle Scholar
  31. Hill WG (1981) Estimation of effective population size from data on linkage disequilibrium. Genet Res 38:209–216CrossRefGoogle Scholar
  32. Holm S (1979) A simple sequentially rejective multiple test procedure. Scand J Stat 6:65–70Google Scholar
  33. Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck in an introduced, insular population of elk. Conserv Genet 11:139–147CrossRefGoogle Scholar
  34. Johnson WE, Onorato DP, Roelke ME, Land ED, Cunningham M, Belden RC, Mcbride R, Jansen D, Lotz M, Shindle D, Howard J, Wildt DE, Penfold LM, Hostetler JA, Oli MK, O’Brien SJ (2010) Genetic restoration of the Florida panther. Science 24:1641–1645CrossRefGoogle Scholar
  35. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  36. Keller LF, Biebach I, Ewing SR, Hoeck PEA (2012) The genetics of reintroductions: inbreeding and genetic drift. In: Ewen JG, Armstrong DP, Parker KA, Seddon PJ (eds) Reintroduction biology: integrating science and management. Blackwell, Oxford, pp 360–394CrossRefGoogle Scholar
  37. Koritnik M (1974) Še nekaj o risu. Lovec 67:198–199Google Scholar
  38. Kos F (1928) Ris (Lynx lynx) na ozemlju etnografske Slovenije. Glasnik muzejskega društva za Slovenijo 1:57–72Google Scholar
  39. Koubek P, Červený J (1996) A synopsis of lynxes trapped in Slovakia and re-introduced to certain countries in Europe. Acta Sc Nat Brno 30:42–43Google Scholar
  40. Lande R (1995) Mutation and conservation. Conserv Biol 9:782–791CrossRefGoogle Scholar
  41. Lopez JV, Cevario S, O’Brien SJ (1996) Complete nucleotide sequences of the domestic cat (Felis catus) mitochondrial genome and a transposed mtDNA tandem repeat (Numt) in the nuclear genome. Genomics 33:229–246PubMedCrossRefGoogle Scholar
  42. Luikart G, Ryman N, Tallmon D, Schwartz M, Allendorf F (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373CrossRefGoogle Scholar
  43. Lynch M, Conery J, Bürger R (1995) Mutation accumulation and the extinction of small populations. Am Nat 146:489–518CrossRefGoogle Scholar
  44. MacDonald DW (2009) Lessons learnt and plans laid: seven awkward questions for the future of reintroductions. In: Hayward MW, Somers M (eds) Reintroduction of top-order predators. Blackwell, Oxford, pp 371–387Google Scholar
  45. Menotti-Raymond M, David VA, Lyons LA, Schäffer AA, Tomlin JF, Hutton MK, O'Brien SJ (1999) A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57:9–23Google Scholar
  46. Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553PubMedCrossRefGoogle Scholar
  47. Miller C, Joyce P, Waits LP (2002) Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160:357–366PubMedGoogle Scholar
  48. Milligan BG (2003) Maximum-likelihood estimation of relatedness. Genetics 163:1153–1167PubMedGoogle Scholar
  49. Miquel C, Bellemain E, Poillot C, Bessiére J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988CrossRefGoogle Scholar
  50. Mirić D (1978) Ausrottungsgeschichte des Luchses auf der Balkanhalbinsel. In: Wotischkowsky U (ed) Der Luchs: Erhaltung und Wiedereinburgerung in Europa. Bernhard, Mammendorf, pp 19–24Google Scholar
  51. Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic variation in black bear populations. Mol Ecol 3:489–495PubMedCrossRefGoogle Scholar
  52. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  53. Phillipsen IC, Funk WC, Hoffman EA, Monsen KJ, Blouin MS (2011) Comparative analyses of effective population size within and among species: ranid frogs as a case study. Evolution 65:2927–2945PubMedCrossRefGoogle Scholar
  54. Polanc P, Sindičić M, Jelenčič M, Gomerčić T, Kos I, Huber Đ (2011) Genotyping success of historical Eurasian lynx (Lynx lynx L.) samples. Mol Ecol Resour 12:293–298PubMedCrossRefGoogle Scholar
  55. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  56. Ratkiewicz M, Matosiuk M, Kowalczyk R, Konopiski MK, Okarma H, Ozolins J, Männil P, Ornicans A, Schmidt K (2012) High levels of population differentiation in Eurasian lynx at the edge of the species’ western range in Europe revealed by mitochondrial DNA analyses. Anim Conserv. doi: 10.1111/j.1469-1795.2012.00556.x Google Scholar
  57. Reed DH, Lowe E, Briscoe DA, Frankham R (2003) Inbreeding and extinction: effects of rate of inbreeding. Conserv Genet 4:405–410CrossRefGoogle Scholar
  58. Robinson JD, Moyer GR (2012) Linkage disequilibrium and effective population size when generations overlap. Evol Appl. doi: 10.1111/j.1752-4571.2012.00289.x PubMedGoogle Scholar
  59. Rueness EK, Jorde PE, Hellborg L, Stenseth NC, Ellegren H, Jakobsen KS (2003) Cryptic population structure in a large, mobile mammalian predator: the Scandinavian lynx. Mol Ecol 12:2623–2633PubMedCrossRefGoogle Scholar
  60. Schmidt KR, Kowalczyk J, Ozolins P, Männi L, Fickel J (2009) Genetic structure of the Eurasian lynx population in north–eastern Poland and the Baltic states. Conserv Genet 10:497–501CrossRefGoogle Scholar
  61. Schmidt K, Ratkiewicz M, Konopinski MK (2011) The importance of genetic variability and population differentiation in the Eurasian lynx Lynx lynx for conservation, in the context of habitat and climate change. Mammal Rev 41:112–124CrossRefGoogle Scholar
  62. Sindičić M, Sinanović N, Majić Skrbinšek A, Huber Đ, Kunovac S, Kos I (2010) Legal status and management of the Dinaric lynx population. Veterinaria 58:229–238Google Scholar
  63. Sindičić M, Gomerčić T, Galov A, Polanc P, Huber Đ, Slavica A (2012) Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region. Mitochondrial DNA 23:201–207PubMedCrossRefGoogle Scholar
  64. Skrbinšek T, Jelenčič M, Waits L, Kos I, Jerina K, Trontelj P (2012) Monitoring the effective population size of a brown bear (Ursus arctos) population using new single-sample approaches. Mol Ecol 21:862–875PubMedCrossRefGoogle Scholar
  65. Spong G, Hellborg L (2002) A near: extinction event in lynx: do microsatellite data tell the tale? Conserv Ecol 6:15Google Scholar
  66. Taberlet P, Griffin S, Goossens B, Questiau S, Manceau V, Escaravage N, Waits LP, Bouvet J (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194PubMedCrossRefGoogle Scholar
  67. Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) Onesamp: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301PubMedCrossRefGoogle Scholar
  68. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680PubMedCrossRefGoogle Scholar
  69. Valiére N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  70. Van Oosterhout C, Weetman D, Hutchinson WF (2006) Estimation and adjustment of microsatellite null alleles in nonequilibrium populations. Mol Ecol Notes 6:255–256CrossRefGoogle Scholar
  71. von Arx M, Breitenmoser-Würsten C, Zimmermann F, Breitenmoser U (2004) Status and conservation of the Eurasian lynx (Lynx lynx) in 2001. KORA Bericht no. 19, MuriGoogle Scholar
  72. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar
  73. Wang J (2007) Triadic IBD coefficients and applications to estimating pairwise relatedness. Genet Res 89:135–153PubMedCrossRefGoogle Scholar
  74. Wang J (2011) Coancestry: a program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol Ecol 11:141–145CrossRefGoogle Scholar
  75. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184CrossRefGoogle Scholar
  76. Waples RS, Do C (2008) ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756PubMedCrossRefGoogle Scholar
  77. Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary N e using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262CrossRefGoogle Scholar
  78. Ward RH, Frazier BL, Dew-Jager K, Paabo S (1991) Extensive mitochondrial diversity within a single Amerindian tribe. Proc Natl Acad Sci USA 88:8720–8724PubMedCrossRefGoogle Scholar
  79. Williamson JE, Huebinger RM, Sommer JA, Louis EE Jr, Barber RC (2002) Development and cross-species amplification of 18 microsatellite markers in the Sumatran tiger (Panthera tigris sumatrae). Mol Ecol Notes 2:110–112Google Scholar
  80. Wu X, Zheng T, Jiang Z, Wei L (2007) The mitochondrial genome structure of the clouded leopard (Neofelis nebulosa). Genome 50:252–257PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Magda Sindičić
    • 1
  • Primož Polanc
    • 2
  • Tomislav Gomerčić
    • 1
    Email author
  • Maja Jelenčič
    • 2
  • Đuro Huber
    • 1
  • Peter Trontelj
    • 2
  • Tomaž Skrbinšek
    • 2
  1. 1.Faculty of Veterinary Medicine University of ZagrebZagrebCroatia
  2. 2.Department of Biology, Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations