Conservation Genetics

, Volume 14, Issue 3, pp 695–703 | Cite as

Population structure of the black arowana (Osteoglossum ferreirai) in Brazil and Colombia: implications for its management

  • Ana Maria Olivares
  • Tomas Hrbek
  • Maria Doris Escobar
  • Susana Caballero
Research Article

Abstract

In regions with high biodiversity, where species are exploited as a source of income, it is essential to learn more about the species that are being commercialized. For the ornamental fish black arowana (Osteoglossum ferreirai), distributed only in Colombia and Brazil, there is currently a lack of information about population estimates in each location, genetic data and lastly, about the events that lead to the current distribution of the species. A genetic population study was conducted by sequencing the mitochondrial genes cytochrome b and ATPase 6, and genotyping of eight microsatellite loci. Mitochondrial gene results indicated the absence of variable sites, and the microsatellite results showed a significantly lower heterozygosity than expected demonstrating that currently the genetic diversity of the species is low. The fact that this species is been exploited and that it shows low genetic diversity means it can quickly become endangered. For this reason, conservation, management and use programs for the black arowana should include and consider the genetic data obtained as well as additional life history and ecological factors to promote its sustainable use.

Keywords

Osteoglossum ferreirai Black arowana Population genetics Microsatellites Ornamental fish trade Conservation 

References

  1. Agudelo-Zamora HD, Lopez-Macia JN, Sanchez-Paez CL (2007) Hábitos alimentarios de la arawana (Osteoglossum bicirrhosum, Vandelli, 1829) (Pisces: Osteoglossidae) en el alto río putumayo, área del parque nacional natural la paya, putumayo. Acta Biológica Colombiana 36:91–101Google Scholar
  2. Argumedo E, Lopez JN, Sanchez-Paez C (2006) Sistemas de Producción de Arawanas Suramericanas, Una Alternativa de Aprovechamiento Sostenible de la Biodiversidad Ictica y de Fortalecimiento de la Acuicultura Amazónica, vol 2. Revista Electrónica de Ingeniería en Producción Acuícola Google Scholar
  3. Banguera-Hinestroza E, Cardenas H, Ruiz-Garcia M, Marmontel M, Gaitan E, Vazquez R, Garcia-Vallejo F (2002) Molecular identification of evolutionarily significant units in the Amazon river dolphin Inia sp. (Cetacea: Iniidae). J Hered 93:312–322PubMedCrossRefGoogle Scholar
  4. Cala P (1973) Presencia de Osteoglossum en los Llanos (Orinoquia). Acta Zool ColombianaGoogle Scholar
  5. CCI (2009) Sistema de información de pesca y acuicultura boletín mensual. Servicio de Información Agropecuaria. http://www.cci.org.co/cci/cci_x/datos/BoletinesIncoder/Mensual/BolMay2009.pdf. Accessed 23 May 2012
  6. Cena CJ, Morgan GE, Malette MD, Heath DD (2006) Inbreeding, outbreeding and environmental effects on genetic diversity in 46 walleye (Sander vitreus) populations. Mol Ecol 15(2):303–320. doi:10.1111/j.1365-294X.2005.02637.x PubMedCrossRefGoogle Scholar
  7. DaSilva T (2009) Marcadores moleculares para análise da variabilidade genética de populações do aruanã (Osteoglossum bicirrhosum). Disertation, Universidade Federal do AmazonasGoogle Scholar
  8. DaSilva T, Hrbek T, Farias I (2009) Microsatellite markers for the silver arowana (Osteoglossum bicirrhosum, Osteoglossidae, Osteoglossiformes). Mol Ecol Resour 9(3):1019–1022. doi:10.1111/j.1755-0998.2009.02556.x CrossRefGoogle Scholar
  9. Dawson MN, Louie KD, Barlow M, Jacobs DK, Swift CC (2002) Comparative phylogeography of sympatric sister species, Clevelandia ios and Eucyclogobius newberryi (teleostei, gobiidae), across the California transition zone. Mol Ecol 11:1065–1075PubMedCrossRefGoogle Scholar
  10. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  11. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, Markowitz S, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2009) Geneious v 4.7Google Scholar
  12. Duncan WP, Fernandes MN (2010) Physicochemical characterization of the white, black, and clearwater rivers of the Amazon Basin and its implications on the distribution of freshwater stingrays (chondrichthyes, potamotrygonidae). Panamjas 5(3):454–464Google Scholar
  13. Earl D, vonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing structure output and implementing the evanno method. Conserv Genet Resour 4(2):359–361CrossRefGoogle Scholar
  14. Escobar MD, Farias IP, Taphorn DC, Landines BM, Hrbek T (2012) Molecular diagnosis of the arowanas Osteoglossum ferreirai Kanazawa, 1996 and O. bicirrhossum (Cuvier, 1829) from the orinoco and Amazon river basins, unpublished manuscriptGoogle Scholar
  15. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14(8):2611–2620. doi:10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  16. Excoffier L, Laval G, Schneider S (2005) An integrated software package for population genetics data analysis. Evol Bioinform 1:47–50Google Scholar
  17. Falla P, Poveda J (2008) Contribución a la gestión sostenible y al conocimiento biológico y socio económico de la cadena de valor de peces ornamentales de puerto carreño, reserva de biosfera el tuparo (Vichada-Colombia). Fundación Omacha-Fundación Horizonte Verde, BogotaGoogle Scholar
  18. Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27(9):489–496Google Scholar
  19. Hrbek T, Farias IP, Crossa M, Sampaio I, Porto JIR, Meyer A (2005) Population genetic analysis of Arapaima gigas, one of the largest freshwater fishes of the Amazon basin: implications for its conservation. Anim Conserv 8(3):297–308. doi:10.1017/s1367943005002210 CrossRefGoogle Scholar
  20. Hubert N, Renno JF (2006) Historical biogeography of South American freshwater fishes. J Biogeogr 33:1414–1436CrossRefGoogle Scholar
  21. Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11:139–147CrossRefGoogle Scholar
  22. Junk W, Soares MGM, Bayley P (2007) Freshwater fishes of the Amazon river basin: their biodiversity, fisheries and habitats. Aquat Ecosyst Health Manage 10(2):153–173CrossRefGoogle Scholar
  23. Kalinowski S (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling design. Conserv Genet 5:539–543CrossRefGoogle Scholar
  24. Kanazawa RH (1966) The Fishes of the genus Osteoglossum with a description of a new species from the Rio Negro. Ichthyol Aquarium J 37(4):161–172Google Scholar
  25. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Nat Acad Sci Proc 86(16):6196–6200CrossRefGoogle Scholar
  26. Lovejoy NR, De Araújo MLG (2000) Molecular systematics, biogeography and population structure of neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol Ecol 9(3):259–268. doi:10.1046/j.1365-294x.2000.00845.x PubMedCrossRefGoogle Scholar
  27. Luikart G, Sherwin WB, Steele BM, Allendorf FW (1998) Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol Ecol 7(8):963–974. doi:10.1046/j.1365-294x.1998.00414.x PubMedCrossRefGoogle Scholar
  28. Lundberg JG, Marshall LG, Guerrero J (1998) The stage for neotropical fish diversification: a history of tropical South American rivers. In: Malabarba LR RR, Vari RP, Lucena ZMS, Lucena CAS (eds) Phylogeny and Classification of Neotropical Fishes. Edipucrs, Porto AlegreGoogle Scholar
  29. Maldonado-Ocampo JA, Vari RP, Usma JS (2008) Checklist of the freshwater fishes of Colombia. Biota Colombiana 9(2):143–237Google Scholar
  30. Mancera-Rodriguez N, Alvarez-Leon R (2008) Comercio de peces ornamentales en Colombia. Acta Biologica Colombiana 13(1):23–52Google Scholar
  31. Matschiner M, Salzburger W (2009) TANDEM: integrating automated allele binning into genetics and genomics workflows. Bioinformatics 25(15):1982–1983. doi:10.1093/bioinformatics/btp303 PubMedCrossRefGoogle Scholar
  32. Mojica JI, Castellanos C, Usma JS, Alvarez R (eds) (2002) Libro rojo de peces dulceacuícolas de Colombia. Bogota, ColombiaGoogle Scholar
  33. Mojica JI, Usma JS, Lasso RÁ-LCA (2012) Libro rojo de peces dulceacuícolas de Colombia. Bogotá, ColombiaGoogle Scholar
  34. Moreau M-A, Coomes OT (2007) Aquarium fish exploitation in western Amazonia: conservation issues in Peru. Environ Conserv 34:12–22CrossRefGoogle Scholar
  35. Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Tree 9(10):373–375PubMedGoogle Scholar
  36. Piry S, Gordon L, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reduction in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  37. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155(2):945–959PubMedGoogle Scholar
  38. Rabello-Neto JG (1999) Biologia reproductiva e alimentação natural do aruanã preta O. ferreirai (Kanazawa, 1966), no municipio de Barcelos, médio Rio Negro, Amazonas, Brasil. Disertation. Universidade do AmazonasGoogle Scholar
  39. Reis RE, Lima F (2009) Osteoglossum ferreirai IUCN Red List of Threatened Species. www.iucnredlist.org
  40. Reis RE, Kullander SO, Ferraris CJ (2004) Checklist of freshwater fishes of South and Central America Porto AlegreGoogle Scholar
  41. Tang M (2002) Plan de manejo de recursos pesqueros. Iquitos, PeruGoogle Scholar
  42. Tang PY, Sivananthan J, Pillay SO (2004) Genetic structure and biogeography of asian arowana (Scleropages formosus) determined by microsatellite and mitochondrial DNA analysis. Asian Fish Sci 17:81–92Google Scholar
  43. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4(3):535–538. doi:10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  44. Willis SC, Nunes M, Montaña CG, Farias IP, Ortí G, Lovejoy NR (2010) The Casiquiare river acts as a corridor between the Amazonas and orinoco river basins: biogeographic analysis of the genus Cichla. Mol Ecol 19(5):1014–1030PubMedCrossRefGoogle Scholar
  45. Winemiller KO, Lopez-Fernandez H, Taphorn DC, Nico LG, Duque AB (2008) Fish assemblages of the Casiquiare river, a corridor and zoogeographical filter for dispersal between the orinoco and Amazon basins. J Biogeogr 35:1551–1563CrossRefGoogle Scholar
  46. Yue GH, Ong D, Wong CC, Lim LC, Orban L (2003) A strain-specific and a sex-associated STS marker for Asian arowana (Scleropages formosus, Osteoglossidae). Aquacult Res 34(11):951–957. doi:10.1046/j.1365-2109.2003.00949.x CrossRefGoogle Scholar
  47. Zucchi MI, Vianello Brondani RP, Pinheiro JB, Chaves LJ, Guedes Coelho AS, Vencovsky R (2003) Genetic structure and gene flow in Eugenia dysenteria DC in the Brazilian Cerrado utilizing SSR markers. Gen Mol Biol 26(4):449–457CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ana Maria Olivares
    • 1
  • Tomas Hrbek
    • 2
  • Maria Doris Escobar
    • 2
  • Susana Caballero
    • 1
  1. 1.Laboratorio de Ecología Molecular de Vertebrados Acuáticos-LEMVA, Biological Sciences DepartmentUniversidad de Los AndesBogotaColombia
  2. 2.Laboratório da Evolução e Genética AnimalUniversidade do AmazonasManausBrazil

Personalised recommendations