Conservation Genetics

, Volume 13, Issue 6, pp 1483–1497 | Cite as

Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska

  • R. K. ToussaintEmail author
  • D. Scheel
  • G. K. Sage
  • S. L. Talbot
Research Article


Multiple species of large octopus are known from the north Pacific waters around Japan, however only one large species is known in the Gulf of Alaska (the giant Pacific octopus, Enteroctopus dofleini). Current taxonomy of E. dofleini is based on geographic and morphological characteristics, although with advances in genetic technology that is changing. Here, we used two mitochondrial genes (cytochrome b and cytochrome oxidase I), three nuclear genes (rhodopsin, octopine dehydrogenase, and paired-box 6), and 18 microsatellite loci for phylogeographic and phylogenetic analyses of octopuses collected from across southcentral and the eastern Aleutian Islands (Dutch Harbor), Alaska. Our results suggest the presence of a cryptic Enteroctopus species that is allied to, but distinguished from E. dofleini in Prince William Sound, Alaska. Existence of an undescribed and previously unrecognized taxon raises important questions about the taxonomy of octopus in southcentral Alaska waters.


Enteroctopus dofleini Phylogeographic Phylogenetic Microsatellite Mitochondrial 



We thank Sarah Sonsthagen and C. Roman Dial for laboratory and analytical assistance, also Gordon Scott, Reid Brewer, Robert Berceli, and Elisa Russ for obtaining samples. Also, thanks to Henry Tomingas for sampling equipment and boat use, Christy Beaty for GIS mapping, Meg Fowler for help with figures, and John Pearce and two anonymous reviewers for providing valuable comments on earlier versions of the manuscript. We acknowledge the late P. R. Rigby for inspiring this study. Thanks to Richard, Susan, and Kathryn Toussaint, Paul Kelly, Jennifer Wehrmann, Roman J. Dial, and many others for their support and collaboration with this project. Funds for this research were provided by the Pollock Conservation Cooperative through Alaska Pacific University, the Alaska Space Grant Program, Jacobs Engineering, U.S. Geological Survey Alaska Science Center, and Alaska Pacific University. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.


  1. Allcock AL, Strugnell J, Johnson MP (2008) How useful are the recommended counts and indices in the systematics of the octopodidae (Mollusca: Cephalopoda). Biol J Linn Soc 95:205–218CrossRefGoogle Scholar
  2. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. Mol Biol 215:403–410Google Scholar
  3. Barry P (2010) Examination of gear type efficacy, tagging methodology, and population structure for establishing a directed Enteroctopus dofleini fishery. MS thesis, School of Fisheries and Ocean Sciences, University of Alaska, FairbanksGoogle Scholar
  4. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)Google Scholar
  5. Berry SS (1912) A review of the cephalopods of western North America. Bull Bur Fish 30(761):296–336Google Scholar
  6. Bromham L, Woolfit M, Lee MSY, Rambaut A (2002) Testing the relationship between morphological and molecular rates of change along phylogenies. Evolution 56:1921–1930Google Scholar
  7. Cabranes C, Fernadez-Rueda P, Martinez JL (2008) Genetic structure of Octopus vulgaris around the Iberian peninsula and Canary Islands as indicated by microsatellite DNA variation. ICES J Mar Sci 65:12–16CrossRefGoogle Scholar
  8. Corander J, Waldmann P, Marttinen P, Sillanpāā MJ (2004) BAPS 2: enhanced possibilities for the analysis of genetic population structure. Bioinformatics 20:2363–2369PubMedCrossRefGoogle Scholar
  9. Davies TJ, Salvolainen V (2006) Neutral theory, phylogenies, and the relationship between phenotypic change and evolutionary rates. Evolution 60:476–483PubMedGoogle Scholar
  10. Derycke S, Remerie T, Vierstraete A, Backeljau T, Vanfleteren J, Vincx M, Moens T (2005) Mitochondrial DNA variation and cryptic speciation within the free-living marine nematode Pellioditis marina. Mar Ecol Prog Ser 300:91–103CrossRefGoogle Scholar
  11. Edwards SV, Beerli P (2000) Perspective: gene divergence, population divergence, population divergence, and the variation in coalescence time in phylogeographic studies. Evolution 54:1839–1854PubMedGoogle Scholar
  12. Erpenbeck D, Knowlton AL, Talbot SL, Highsmith RC, Van Soest RWM (2004) A molecular comparison of Alaskan and northeast Atlantic Halichondria panacea (Pallas 1766) (Porifera: Demospongiae) populations. Boll Mus Ist Univ Genova 68:319–325Google Scholar
  13. Fluxus Technology Ltd (2004) Network 460. http://wwwfluxus-engineeringcom/sharenethtm. Accessed Dec 2011
  14. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selections. Genetics 147:915–925Google Scholar
  15. Gleadall IG (1993) Identification of the long-ligula octopuses of Japan: a status report. In: Okutani T, O’Dor RK, Kubodera T (eds) Recent advances in cephalopod fisheries biology. Tokai University Press, Tokyo, pp 145–158Google Scholar
  16. Griffiths A, Machado-Schiaffino G, Dillane E, Coughlan J, Horreo J, Bowkett A, Minting P, Toms S, Roche W, Gargan P, McGinnity P, Cross T, Bright D, Garcia-Vazquez E, Stevens J (2010) Genetic stock identification of Atlantic Salmon (Salmo salar) populations in the southern part of the European range. BMC Genetics 11:31Google Scholar
  17. Hartwick B (1983) Octopus dofleini In: Boyle PR (ed) Cephalopod life cycles. Academic Press, London 1:157–200Google Scholar
  18. Hartwick EB, Barriga I (1997) Octopus dofleini: biology and fisheries in Canada. In: Lang MA, Hochberg FG (eds) Proceedings of the workshop on the fishery and market potential of octopus in California. Smithsonian Institution, WAGoogle Scholar
  19. Hartwick EB, Ambrose RF, Robinson SMC (1984) Den utilization and the movements of tagged Octopus dofleini. Mar Behav and Physiol 11:95–110CrossRefGoogle Scholar
  20. Hebert PDN, Stoekle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. Public Libr Sci Biol 2:1657–1663Google Scholar
  21. Hochberg FG (1998) Class cephalopoda In: Scott PV, Blake JA (eds) Taxonomic atlas of the benthic fauna of the Santa Maria Basin and the Western Santa Barbara channel, vol 8: the mollusca, Part 1. Santa Barbara Museum of Natural History, Santa Barbara, pp 175–236Google Scholar
  22. Hoffman JI, Dasmahapatra KK, Amos W, Phillips CD, Gelatt TS, Bickham JW (2009) Contrasting patterns of genetic diversity at three genetic markers in a marine mammal metapopulation. Mol Ecol 18:2961–2978PubMedCrossRefGoogle Scholar
  23. Humphries EM, Winker K (2010) Discord reigns among nuclear, mitochondrial and phenotypic estimates of divergence in nine lineages of trans-Beringian birds. Mol Ecol 20:573–583. doi: 10.1111/j1365-294X.2010.04965.x PubMedCrossRefGoogle Scholar
  24. Jorgensen EM (2009) Field guide to squids and octopods of the eastern north Pacific and Bering Sea. Alaska Sea Grant, FairbanksGoogle Scholar
  25. Jorgensen EM, Strugnell JM, Allcock LA (2010) Description and phylogenetic relationships of a new genus of octopus, Sasakiopus (Cephalopoda: Octopodidae), from the Bering Sea, with a redescription of Sasakiopus salebrosus (Sasaki, 1920). J Molluscan Stud 76:57–66CrossRefGoogle Scholar
  26. Kanamaru S, Yamashita Y (1969) The fisheries biology for the octopus, “mitzu-dako” (Paraoctopus hongkongensis (Hoyle)). (I) Summer movements in Onishika area of north-western part of Hokkaido. In: Investigation of the marine resources of Hokkaido and development of the fishing industry, Seattle, pp 1961–1965Google Scholar
  27. Kaneko N, Kubodera T, Iguchi A (2011) Taxonomic study of shallow-water octopuses (Chephalopda: Octopodidae) in Japan and adjacent waters using mitochondrial genes with perspectives on octopus DNA barcoding. Malacologia 54:97–108CrossRefGoogle Scholar
  28. Keever CC, Sunday J, Puritz JB, Addison JA, Toonen RJ, Grosberg RK, Hart MW (2009) Discordant distribution of populations and genetic variation in a sea star with high dispersal potential. Evoluion 63:3214–3227CrossRefGoogle Scholar
  29. Kozloff EN (1996) Marine invertebrates of the Pacific. Northwest University of Washington Press, Seattle, p 539Google Scholar
  30. Kubodera T (1991) Distribution and abundance of the early life stages of octopus, Octopus dofleini Wülker, 1910 in the North Pacific. Bull of Mar Sci 49:235–243Google Scholar
  31. Langella O (1999) Populations 1.2.30 bioinformatics software. Accessed 2011
  32. Mather J (1985) Mating behavior of Octopus joubini Robson. Veliger 21:265–267Google Scholar
  33. McGovern TM, Keever CC, Saski CA, Hart MW, Marko PB (2010) Divergence genetics analysis reveals historical population genetic processes lading to contrasting phylogeographic patterns in co-distributed species. Mol Ecol 19:5043–5060PubMedCrossRefGoogle Scholar
  34. Mottet MG (1975) The fishery biology of Octopus dofleini (Wülker). Technical report no. 16. Management and Research Division Washington Department of Fisheries, p 39Google Scholar
  35. Muicy G, Solé-Cava A, Thorpe J, Boury-Esnault N (1996) Genetic evidence for extensive cryptic speciation in the subtidal sponge Plankina trilopha (Porifera: Demospongiae: Homoscleromorpha) from the western Mediterranean. Mar Ecol Prog Ser 138:181–187CrossRefGoogle Scholar
  36. Nesis KN (1982) Cephalopods of the world: squids, cuttlefishes, octopuses and allies. TFH Publications, Inc. Ltd., Neptune CityGoogle Scholar
  37. Nixon M (1998) Overview of cephalopod characters systematics and biogeography of cephalopods. In: Voss NA, Vecchione M, Toll RB, Sweeney MH (eds) Systematics and biogeography of cephalopods, vol I. Smithsonian Institution Press, Washington, DC, pp 7–9Google Scholar
  38. Oetting WS, Lee HK, Flanders DJ, Wiesner GL, Sellers TA, King RA (1995) Linkage analysis with multiplexed short tandem repeat polymorphisms using infrared fluorescence and M13 tailed primers. Genomics 30:450–458PubMedCrossRefGoogle Scholar
  39. Page RDM (2001) Tree View[Wing32] http://taxonomyzoologyglaacuk/rod/rodhtml
  40. Papadopoulou A, Bergsten J, Fujisawa T, Monaghan MT, Barraclough TG, Vogler AP (2008) Speciation and DNA barcodes: testing the effects of dispersal on the formation of discrete sequence clusters. Phil Trans Roy Soc Lond B Biol Sci 363:2987–2996CrossRefGoogle Scholar
  41. Park SDE (2001) Trypanotolerance in west African cattle and the population genetic effects of selection. PhD thesis, University of DublinGoogle Scholar
  42. Pickford GE (1964) Octopus dofleini (Wülker), the giant octopus of the North Pacific. Bull Bingham Oceanogr Collect 19:1–70Google Scholar
  43. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  44. Raymond M, Rousset F (1995) GENEPOP (Version 12): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249Google Scholar
  45. Reuter RF, Connors ME, Ducisumo J, Gaichas S, Ormseth O, Tenbrink T (2010) Managing non-target data-poor species using catch limits: lessons from the Alaskan groundfish fishery. Fish Manage Ecol 17:1–13CrossRefGoogle Scholar
  46. Rigby PR (2004) Ecology of immature octopus Enteroctopus dofleini: growth, movement and behavior (dissertation). Hokkaido University, HokkaidoGoogle Scholar
  47. Sala-Bozano M, Ketmaier V, Mariani S (2009) Contrasting signals from multiple markers illuminate population connectivity in a marine fish. Mol Ecol 18:4811–4826PubMedCrossRefGoogle Scholar
  48. Scheel D (2002) Characteristics of habitats used by Enteroctopus dofleini in Prince William Sound and Cook Inlet, Alaska. PSZN Mar Ecol 41:185–206CrossRefGoogle Scholar
  49. Scheel D, Bisson L (2012) Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wülker, 1910). J Exp Mar Biol Ecol 416–417:21–31CrossRefGoogle Scholar
  50. Schneider S, Roessli D, Excoffier L (2000) ARLEQUIN: a software for population genetics analysisGoogle Scholar
  51. Söller R, Warnke K, Saint-Paul U, Blohm D (2000) Sequence divergence of mitochondrial DNA indicates cryptic biodiversity in Octopus vulgaris and supports the taxonomic distinctiveness of Octopus mimus (Cephalopoda: Octopodidae). Mar Bio 136:29–35CrossRefGoogle Scholar
  52. Sosa IAB, Beckenbach K, Hartwick B, Smith MJ (1995) The molecular phylogeny of five eastern North Pacific octopus species. Mol Phylo and Evol 4:163–174CrossRefGoogle Scholar
  53. Stewart NC Jr, Via LE (1993) A rapid CTAB DNA isolation technique useful for RAPD fingerprinting and other PCR applications. Biotechniques 14:748–749PubMedGoogle Scholar
  54. Strugnell JM, Lindgren AR (2007) A barcode of life database for the Cephalopoda considerations and concerns. Rev Fish Biol Fish 17:334–337CrossRefGoogle Scholar
  55. Strugnell JM, Norman M, Drummind AJ, Cooper A (2004) Neotenous origins for pelagic octopuses. Curr Biol 14:R300–R301PubMedCrossRefGoogle Scholar
  56. Swofford D (2003) PAUP*: phylogenetic analysis using parsimony and other methods (software) Sinauer Associates, SunderlandGoogle Scholar
  57. Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics 123:597–601Google Scholar
  58. Takumiya M, Koayashi M, Tsuneki K, Furuya H (2005) Phylogenetic relationships among major species of Japanese coleoid cephalopods (Mollusca: Cephalopoda) using three mitochondrial DNA sequences. Zool Sci 22:155–167CrossRefGoogle Scholar
  59. Tamura K, Peterson D, Peterson N, Strecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Bio and Evol 28:2731–2739CrossRefGoogle Scholar
  60. Terry A, Bucciarelli G, Bernardi G (2001) Restricted gene flow and incipient speciation in the disjunct Pacific Ocean and Sea of Cortez populations of a reef fish species, Girella nigricans. Evolution 54:652–659Google Scholar
  61. Teske PR, Oosthuizen A, Papadopoulos I, Barker NP (2007) Phylogeographic structure of Octopus vulgaris in South Africa revisited: identification of a second lineage near Durban Harbour. Mar Bio 151:2119–2122CrossRefGoogle Scholar
  62. Toussaint RK, Sage GK, Talbot SL, Scheel D (2011) Microsatellite marker isolation and development for the giant Pacific octopus (Enteroctopus dofleini). Con Gen Res. doi: 10.1007/s12686-011-9588-z Google Scholar
  63. Villesen P (2007) FaBox: an online toolbox for fasta sequences. Mol Ecol Notes 7:965–968CrossRefGoogle Scholar
  64. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2212PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. (outside the USA) 2012

Authors and Affiliations

  • R. K. Toussaint
    • 1
    Email author
  • D. Scheel
    • 1
  • G. K. Sage
    • 2
  • S. L. Talbot
    • 2
  1. 1.Alaska Pacific UniversityAnchorageUSA
  2. 2.U.S. Geological SurveyAnchorageUSA

Personalised recommendations