Conservation Genetics

, Volume 13, Issue 6, pp 1435–1445

Sibling species in South Indian populations of the rufous horse-shoe bat Rhinolophus rouxii

  • Balaji Chattopadhyay
  • Kritika M. Garg
  • Vinoth Kumar A. K.
  • Paramanantha Swami Doss D.
  • Uma Ramakrishnan
  • Sripathi Kandula
Research Article

Abstract

Cryptic species are difficult to identify using morphological identification tools. They represent hitherto unknown biodiversity and their discovery helps formulate more efficient conservation management policies. In this study we assess intraspecific diversity of Rhinolophus rouxii and investigate the presence of cryptic lineages. We characterize acoustic, morphological and genetic differences between allopatric populations of this species in Southern India. Our results reveal the presence of two distinct acoustic lineages (80 and 90 kHz phonic types). Forearm length also differs significantly between the two phonic types. They share a sister taxa relationship and the average genetic distance between them is over 8 %. Phylogenetic reconstruction and the associated divergence time suggest an evolutionary history that correlates with a middle Miocene separation. We propose that these two phonic types be called sibling species and evolutionarily significant units (ESU) within the subgenus Indorhinolophus. We recommend a new name, R. indorouxii for the species representing the 90 kHz phonic type. This study reiterates our lack of accurate taxonomic knowledge of bats, and highlights the value in combining genetics with behavioral (phonic characterization) and morphological measurements in the discovery of cryptic species.

Keywords

Evolutionary significant units (ESU) Cryptic species Phonic type Rhinolophus rouxii Sibling species 

Supplementary material

10592_2012_361_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 22 kb)
10592_2012_361_MOESM2_ESM.eps (423 kb)
Fig. S1Ultrametric tree depicting phylogenetic relationships and divergence times for partial cyt b sequence (696bp). Node bars represent 95% HPD, node labels represent the posterior probability of each node (EPS 423 kb)

References

  1. Aldridge HDJN, Rautenbach IL (1987) Morphology, echolocation and resource partitioning in insectivorous bats. J Anim Ecol 56:763–778CrossRefGoogle Scholar
  2. Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer, SunderlandGoogle Scholar
  3. Baker RJ, Bradley RD (2006) Speciation in mammals and the genetic species concept. J Mammal 87:643–662PubMedCrossRefGoogle Scholar
  4. Barber BR, Jensen G (2012) Quaternary climate change was not an engine of diversification in new world bats (Chiroptera). J Mammal Evol 19:129–133CrossRefGoogle Scholar
  5. Barclay RMR, Brigham RM (1991) Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? Am Nat 137:693–703CrossRefGoogle Scholar
  6. Barlow KE, Jones G (1997) Function of pipistrelle social calls: field data and a playback experiment. Anim Behav 53:991–999CrossRefGoogle Scholar
  7. Barratt EM, Deaville R, Burland TM, Bruford MW, Jones G et al (1997) DNA answers the call of pipistrelle bat species. Nature 387:138–139PubMedCrossRefGoogle Scholar
  8. Bates PJ, Harrison D (1997) Bats of the Indian subcontinent. Harrison Zoological Museum, EnglandGoogle Scholar
  9. Bickford D, Lohman DJ, Sodhi NS et al (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155PubMedCrossRefGoogle Scholar
  10. Bowen BW, Nelson WS, Avise JC (1993) A molecular phylogeny for marine turtles: trait mapping, rate assessment, and conservation relevance. Proc Natl Acad Sci USA 90:5574–5577PubMedCrossRefGoogle Scholar
  11. Bradley RD, Baker RJ (2001) A test of the genetic species concept: cytochrome-b sequences and mammals. J Mammal 82:960–973CrossRefGoogle Scholar
  12. Chattopadhyay B, Schuller G, Garg KM, Kandula S (2010) A new phonic type of the rufous horseshoe bat Rhinolophus rouxii from southern India. Curr Sci India 99:114–118Google Scholar
  13. Chattopadhyay B, Garg KM, Doss PS, Ramakrishnan U, Kandula S (2011) Molecular genetic perspective of group-living in a polygynous fruit bat, Cynopterus sphinx. Mamm Biol 76:290–294CrossRefGoogle Scholar
  14. Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295PubMedCrossRefGoogle Scholar
  15. Cronin MA (2006) A proposal to eliminate redundant terminology for intra-species. Wildl Soc B 34:237–241CrossRefGoogle Scholar
  16. Csorba G, Ujhelyi P, Thomas N (2003) Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana Books, Bishop’s CastleGoogle Scholar
  17. Dobzhansky T (1951) Genetics and the origin of species, 3rd edn. Columbia University Press, New YorkGoogle Scholar
  18. Drummond AJ, Rambaut A (2007) “BEAST”: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  19. Flanders J, Jones G, Benda P, Dietz C, Zhang S et al (2009) Phylogeography of the greater horseshoe bat, Rhinolophus ferrumequinum: contrasting results from mitochondrial and microsatellite data. Mol Ecol 18:306–318PubMedCrossRefGoogle Scholar
  20. Francis CM, Habersetzer J (1998) Inter- and intra-specific variation in echolocation call frequency and morphology of horseshoe bats (Rhinolophus and Hipposideros). In: Kunz TH, Racey PA (eds) Bat biology and conservation. Smithsonian Institution Press, Washington, pp 169–179Google Scholar
  21. Francis CM, Kock D, Habersetzer J (1999) Sibling species of Hipposideros ridleyi (Mammalia, Chiroptera, Hipposideridae). Senck Biol 79:255–270Google Scholar
  22. Fraser DJ, Bernatchez L (2001) Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Mol Ecol 10:2741–2752PubMedGoogle Scholar
  23. Guillen A, Juste J, Ibanez C (2000) Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: an exploration of the adaptive meaning of the constant frequency value in Rhinolophoid CF bats. J Evol Biol 13:70–80CrossRefGoogle Scholar
  24. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acid Symp Ser 41:95–98Google Scholar
  25. Heckel G, Voigt CC, Mayer F, von Helversen O (1999) Extra-harem paternity in the white-lined bat Saccopteryx bilineata (Emballonuridae). Behaviour 136:1173–1185CrossRefGoogle Scholar
  26. Heller KG, von Helversen O (1989) Resource partitioning of sonar frequency bands in rhinolophoid bats. Oecologia 80:178–186Google Scholar
  27. Hill T, Lewicki P (2007) STATISTICS: methods and applications. StatSoft, TulsaGoogle Scholar
  28. Irwin DM, Kocher TD, Wilson AC (1991) Evolution of the cytochrome b gene of mammals. J Mol Evol 32:128–144PubMedCrossRefGoogle Scholar
  29. Jacobs DS, Barclay RMR, Walker MH (2007) The allometry of echolocation call frequencies of insectivorous bats: why do some species deviate from the pattern? Oecologia 152:583–594PubMedCrossRefGoogle Scholar
  30. Johns GC, Avise JC (1998) A comparative summary of genetic distances in the vertebrates from the mitochondrial cytochrome b gene. Mol Biol Evol 15:1481–1490PubMedCrossRefGoogle Scholar
  31. Jones G (1996) Does echolocation constrain the evolution of body size in bats? In: Miller PJ (ed) Miniature vertebrates: the implications of small vertebrates. Symp Zool Soc Lond, vol 69, pp 111–128Google Scholar
  32. Jones G, Barlow KE (2004) Cryptic species of echolocating bats. In: Thomas JA, Moss CF, Vater M (eds) Echolocation in bats and dolphins. University of Chicago Press, Chicago, pp 345–349Google Scholar
  33. Jones G, Van Parijs SM (1993) Bimodal echolocation in pipistrelle bats: are cryptic species present? Proc R Soc Lond B Biol Sci 251:119–125CrossRefGoogle Scholar
  34. Kiefer A, Mayer F, Kosuch J, von Helversen O, Veith M (2002) Conflicting molecular phylogenies of European long-eared bats (Plecotus) can be explained by cryptic diversity. Mol Phylogenet Evol 25:557–566PubMedCrossRefGoogle Scholar
  35. Kimura M (1980) A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120PubMedCrossRefGoogle Scholar
  36. Kingston T, Rossiter SJ (2004) Harmonic-hopping in Wallacea’s bats. Nature 429:654–657PubMedCrossRefGoogle Scholar
  37. Kingston T, Lara MC, Jones G, Akbar Z, Kunz TH et al (2001) Acoustic divergence in two cryptic Hipposideros species: a role for social selection? Proc R Soc Lond B Biol Sci 268:1381–1386CrossRefGoogle Scholar
  38. Korine C, Kalko EKV (2001) Toward a global bat-signal database. IEEE Eng Med Biol 20:81–85CrossRefGoogle Scholar
  39. Lim MLM, Sodhi NS, Endler JA (2008) Conservation with sense. Science 18:281CrossRefGoogle Scholar
  40. Mao XG, Nie WH, Wang JH et al (2007) Karyotype evolution in Rhinolophus bats (Rhinolophidae, Chiroptera) illuminated by cross-species chromosome painting and G-banding comparison. Chromosome res 15:835–848PubMedCrossRefGoogle Scholar
  41. Mao XG, Zhu GJ, Zhang SY, Rossiter SJ (2010a) Pleistocene climatic cycling drives intra-specific diversification in the intermediate horseshoe bat (Rhinolophus affinis) in Southern China. Mol Ecol 19:2754–2769PubMedCrossRefGoogle Scholar
  42. Mao XG, Zhang JP, Zhang SY, Rossiter SJ (2010b) Historical male-mediated introgression in horseshoe bats revealed by multi-locus DNA sequence data. Mol Ecol 19:1352–1366PubMedCrossRefGoogle Scholar
  43. Mayer F, von Helversen O (2001) Cryptic diversity in European bats. Proc R Soc Lond B Biol Sci 268:1825–1832CrossRefGoogle Scholar
  44. Mayer F, Dietz C, Kiefer A (2007) Molecular species identification boosts bat diversity. Front Zool 4:1742–1747CrossRefGoogle Scholar
  45. Moritz C (1994) Defining ‘evolutionary significant units’ for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  46. Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New YorkGoogle Scholar
  47. Neuweiler G, Metzner W, Heilmann U et al (1987) Foraging behavior and echolocation in the rufous horseshoe bat (Rhinolophusrouxii) of Sri Lanka. Behav Ecol Sociobiol 20:53–67CrossRefGoogle Scholar
  48. Norberg UM, Rayner JMV (1987) Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos T Roy Soc B 316:335–427CrossRefGoogle Scholar
  49. Novick A (1977) Acoustic orientation. In: Wimsatt WA (ed) Biology of bats, vol 3. Academic, New York, pp 73–287Google Scholar
  50. Pfaff B (2008) VAR, SVAR and SVEC models: implementation within R package vars. J Stat Softw 27: 1–32. Available: http://www.jstatsoft.org/v27/i04/ Google Scholar
  51. Pfenninger M, Schwenk K (2007) Cryptic animal species are homogeneously distributed among taxa and biogeographical regions. BMC Evol Biol 7:121–127PubMedCrossRefGoogle Scholar
  52. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256PubMedCrossRefGoogle Scholar
  53. R Development Core Team (2011) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0. Available: http://www.R-project.org
  54. Rambaut A, Drummond AJ (2007) Tracer 1.4. Available: http://beast.bio.ed.ac.uk/Tracer
  55. Ravaoarimanana IB, Tiedemann R, Montagnon D, Rumpler Y (2004) Molecular and cytogenetic evidence for cryptic speciation within a rare endemic Malagasy lemur, the Northern Sportive Lemur (Lepilemur septentrionalis). Mol Phylogenet Evol 31:440–448PubMedCrossRefGoogle Scholar
  56. Rossiter SJ, Benda P, Dietz C, Zhang S, Jones G (2007) Range wide phylogeography in the greater horseshoe bat inferred from microsatellites: implications for population history, taxonomy and conservation. Mol Ecol 16:4699–4714PubMedCrossRefGoogle Scholar
  57. Ryder OA (1986) Species conservation and systematics: the dilemma of subspecies. Trends Ecol Evol 1:9–10CrossRefGoogle Scholar
  58. Saunders MB, Barclay RMR (1992) Ecomorphology of insectivorous bats: a test of predictions using two morphologically similar species. Ecology 73:1335–1345CrossRefGoogle Scholar
  59. Schnitzler H-U, Suga N, Simmons JA (1976) Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. J Comp Physiol A106:99–110CrossRefGoogle Scholar
  60. Schuller G (1980) Hearing characteristics and Doppler shift compensation in South Indian CF-FM bats. J Comp Physiol A 139:349–356CrossRefGoogle Scholar
  61. Servant GA, Francis CM, Ricklefs RE (2003) Phylogeny and biogeography of the horseshoe bats. In: Csorba G, Ujhelyi P, Thomas N (eds) Horseshoe bats of the world (Chiroptera: Rhinolophidae). Alana Books, Bishop’s Castle, pp Xii–xxivGoogle Scholar
  62. Sinha YP (1973) Taxonomic studies on the Indian horseshoe bats of the genus Rhinolophus lacepede. Mammalia 37:603–630CrossRefGoogle Scholar
  63. Sun K, Feng J, Jin L, Liu Y, Shi L, Jiang T (2009) Structure, DNA sequence variation and phylogenetic implications of the mitochondrial control region in horseshoe bats. Mamm Biol 74:130–144CrossRefGoogle Scholar
  64. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739PubMedCrossRefGoogle Scholar
  65. Taniguchi I (1985) Echolocation sounds and hearing of the greater Japanese horseshoe bat Rhinolophus ferrumequinumnippon. J Comp Physiol A 156:185–188CrossRefGoogle Scholar
  66. Teeling EC, Springer MS, Madsen O, Bates P, O’Brien SJ et al (2005) A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580–584PubMedCrossRefGoogle Scholar
  67. Thabah A, Rossiter SJ, Kingston T, Zhang S, Parsons S et al (2006) Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatuss. l. (Chiroptera: Hipposideridae) from the Indo-Malayan region. Biol J Linn Soc 88:119–130CrossRefGoogle Scholar
  68. Thomas NM (2000) Morphological and mitochondrial-DNA variation in Rhinolophus rouxii (Chiroptera). Bonn Zool Beitr 49:1–18Google Scholar
  69. Vaughan N, Jones G, Harris S (1997) Habitat use by bats (Chiroptera) assessed by means of a broad-band acoustic method. J Appl Ecol 34:716–730CrossRefGoogle Scholar
  70. Waples RS (1991) Pacific salmon, Oncorhynchus spp., and the definition of ‘species’ under the endangered species act. Mar Fish Rev 53:11–22Google Scholar
  71. Weir JT, Schluter D (2007) The latitudinal gradient in recent speciation and extinction rates of birds and mammals. Science 315:1574–1576PubMedCrossRefGoogle Scholar
  72. Zhang W (1985) A study on the karyotypes in four species of bat (Rhinolophus). Acta Theriol Sinica 5:95–101Google Scholar
  73. Zhang L, Jones G, Zhang J et al (2009) Recent surveys of bats (Mammalia: Chiroptera) from China. I. Rhinolophidae and Hipposideridae. Acta Chiropterol 11:71–88CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Balaji Chattopadhyay
    • 1
    • 2
  • Kritika M. Garg
    • 2
  • Vinoth Kumar A. K.
    • 1
  • Paramanantha Swami Doss D.
    • 1
  • Uma Ramakrishnan
    • 2
  • Sripathi Kandula
    • 1
  1. 1.School of Biological SciencesMadurai Kamaraj UniversityMaduraiIndia
  2. 2.National Centre for Biological SciencesTIFRBangaloreIndia

Personalised recommendations