Advertisement

Conservation Genetics

, Volume 13, Issue 3, pp 681–692 | Cite as

Connectivity and population subdivision at the fringe of a large brown bear (Ursus arctos) population in North Western Europe

  • Alexander KopatzEmail author
  • Hans Geir Eiken
  • Snorre B. Hagen
  • Minna Ruokonen
  • Rodrigo Esparza-Salas
  • Julia Schregel
  • Ilpo Kojola
  • Martin E. Smith
  • Ingvild Wartiainen
  • Paul E. Aspholm
  • Steinar Wikan
  • Alexander M. Rykov
  • Olga Makarova
  • Natalia Polikarpova
  • Konstantin F. Tirronen
  • Pjotr I. Danilov
  • Jouni Aspi
Research Article

Abstract

Loss of connectivity and habitat destruction may lead to genetic depletion of wild animal populations, especially in species requiring large, connected territories as the brown bear (Ursus arctos). Brown bear populations of North Western Russia, Finland and Northern Norway have been assumed to form one large, continuous population; however this hypothesis has not been tested sufficiently. We have genotyped 1,887 samples from 2005 to 2008 from four distinct areas and used the resulting DNA profiles from 146 different individuals to analyze the genetic diversity, population structure, and the migration rates among groups. In addition, we have tested for traces of previous genetic bottlenecks. Individuals from Eastern Finland and Russian Karelia were grouped in the same cluster (“Karelia”), while distinctive subpopulations of brown bears were detected in the north (“Pasvik”), and the east (“Pinega”). All three subpopulations displayed high genetic variation, with expected heterozygosities (H E) of 0.77–0.81, but differentiation among the clusters was relatively low (average F ST = 0.051, P < 0.001). No evidence of genetic bottlenecks in the past was found. We detected a highly significant isolation-by-distance (IBD) pattern. For Pasvik, self-recruitment was found to be very high (96%), pointing to the possibility of genetic isolation. In contrast, between Karelia and Pinega we detected high, bi-directional migration rates (~30%), indicating genetic exchange. Conclusively, despite of a substantial influence of IBD on the genetic structure in the region, we detected considerable variation in connectivity among the identified clusters that could not be explained solely by the distance between them.

Keywords

Gene flow Isolation-by-distance Non-invasive genetic sampling Microsatellites Migration Population structure 

Notes

Acknowledgments

We thank Siv Grete Aarnes, Camilla Tobiassen, Mari Bergsvåg, Leif Ollila, Pekka Sulkava, Tuomo Ollila, Tanja Kyykkä, Bjørn Mentyjärvi, Espen Aarnes, Sari Magga, Matti Heino, Jari Ylönen, Alexander Mershiev, Vladimir V. Belkin, and Nikolai L. Rendakov for excellent assistance in the laboratory and the field. We also thank the moose hunters from Kainuu, Finland and the Finnish Hunters’ Association, The State Nature Inspectorate in Norway and all others that have contributed to collecting samples and for their collaboration. Financial support for this project has been provided by the Academy of Finland (Project No 116579 to JA), the Ministry of Agriculture and Forestry in Finland, the Raili Korkka Scholarship (AK), The Norwegian Ministry of Environment, and the Directorate for Nature Management and the Finnmark County Governor’s Office in Norway.

Supplementary material

10592_2012_317_MOESM1_ESM.xlsx (59 kb)
Supporting information: The individual genotypes used in this study are accessible in the online version of this article. Table S1: Table with the individuals used, genotype, gender, and location. Supplementary material 1 (XLSX 58 kb)

References

  1. Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program Structure. Mol Ecol Resour 8:1219–1229PubMedCrossRefGoogle Scholar
  2. Anderson CD, Epperson BK, Fortin MJ et al (2010) Considering spatial and temporal scale in landscape-genetic studies of gene flow. Mol Ecol 19:3565–3575PubMedCrossRefGoogle Scholar
  3. Aspi J, Roininen E, Ruokonen M et al (2006) Genetic diversity, population structure, effective population size and demographic history of the Finnish wolf population. Mol Ecol 15:1561–1576PubMedCrossRefGoogle Scholar
  4. Aspi J, Roininen E, Kiiskila J et al (2009) Genetic structure of the northwestern Russian wolf populations and gene flow between Russia and Finland. Conserv Genet 10:815–826CrossRefGoogle Scholar
  5. Barton NH, Slatkin M (1986) A quasi-equilibrium theory of the distribution of rare alleles in a subdivided population. Heredity 56:409–416PubMedCrossRefGoogle Scholar
  6. Belkhir K, Borsa P, Chikhi L et al (1996–2004) GENETIX 4.05, logiciel sous Windows pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, Université de Montpellier II, MontpellierGoogle Scholar
  7. Bellemain E, Swenson JE, Tallmon O, Brunberg S, Taberlet P (2005) Estimating population size of elusive animals with DNA from hunter-collected feces: four methods for brown bears. Conserv Biol 19:150–161CrossRefGoogle Scholar
  8. Black WC, Kraftsur ES (1985) A FORTRAN programme for the calculation and analysis of two-locus linkage disequilibrium coefficients. Theor Appl Genet 70:491–496CrossRefGoogle Scholar
  9. Carmichael L, Nagy J, Larter N, Strobeck C (2001) Prey specialization may influence patterns of gene flow in wolves of the Canadian Northwest. Mol Ecol 10:2787–2798PubMedGoogle Scholar
  10. Cattet M, Boulanger J, Stenhouse G et al (2008) An evaluation of long-term capture effects in ursids: implications for wildlife welfare and research. J Mamm 89:973–990CrossRefGoogle Scholar
  11. Chestin I (1999) Status and management of the brown bear in Russia. In: Servheen C, Herrero S, Peyton B (eds) Bears—status survey and conservation action plan. IUCN, Cambridge, pp 136–143Google Scholar
  12. Cornuet JM, Luikart G (1997) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014Google Scholar
  13. Crooks KR (2002) Relative sensitivities of mammalian carnivores to habitat fragmentation. Conserv Biol 16:488–502CrossRefGoogle Scholar
  14. Danilov PI (2005) Game animals of Karelia—ecology, resources, management, protection. Nauka, MoscowGoogle Scholar
  15. De Barba M, Waits LP, Garton EO et al (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol Ecol 19:3938–3951PubMedCrossRefGoogle Scholar
  16. Eiken HG, Andreassen RJ, Kopatz A et al (2009) Population data for 12 STR loci in Northern European brown bear (Ursus arctos) and application of DNA profiles for forensic case work. Forensic Sci Int Genet Suppl Ser 2:273–274CrossRefGoogle Scholar
  17. Elgmork K (1990) The brown bear Ursus arctos L. in Norway: assessment of status around 1990. Biol Conserv 78:233–237CrossRefGoogle Scholar
  18. Ermala A (2003) A survey of large predators in Finland during the 19th–20th centuries. Acta Zool Litu 13:15–20Google Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  20. Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567PubMedCrossRefGoogle Scholar
  21. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  22. Forbes SH, Hogg JT (1999) Assessing population structure at high levels of differentiation: microsatellite comparisons of bighorn sheep and large carnivores. Anim Conserv 2:223–233CrossRefGoogle Scholar
  23. Frantz AC, Cellina S, Krier A, Schley L, Burke T (2009) Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: clusters and isolation by distance? J Appl Ecol 46:493–505CrossRefGoogle Scholar
  24. Garza JC, Williamson E (2001) Detection of reduction in population size using data from microsatellite DNA. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  25. Geffen E, Anderson MJ, Wayne R (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490PubMedCrossRefGoogle Scholar
  26. Gromtsev AN, Litinskiy PU, Lindholm T, Kurhinen JP (2009) The state and problems of indigenous forests preservation in Eastern Fennoscandia. In: Spidsø TK, Sørensen OJ (eds) The last large intact forests in Northwest Russia - protection and sustainable use, TemaNord 523. Nordic Council of Ministers, Copenhagen, pp 55–65Google Scholar
  27. Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  28. Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation-by-distance processes using dominant genetic markers. Mol Ecol 12:1577–1588PubMedCrossRefGoogle Scholar
  29. Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620CrossRefGoogle Scholar
  30. Hedrick PW (1995) Gene flow and genetic restoration—the Florida panther as a case-study. Conserv Biol 9:996–1007CrossRefGoogle Scholar
  31. Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332PubMedCrossRefGoogle Scholar
  32. Karivalo L, Butorin A (2006) The Fennoscandian Green Belt. In: Terry A, Ullrich K, Riecken U (eds) The Green Belt of Europe—from vision to reality. IUCN, Gland, pp 37–45Google Scholar
  33. Kendall KC, Stetz JB, Boulanger J et al (2009) Demography and genetic structure of a recovering grizzly bear population. J Wildl Manage 73:3–17CrossRefGoogle Scholar
  34. Kindberg J, Ericsson G, Swenson JE (2009) Monitoring rare or elusive large mammals using effort-corrected voluntary observers. Biol Conserv 142:159–165CrossRefGoogle Scholar
  35. Kohn M, Knauer F, Stoffella A, Schroder W, Paabo S (1995) Conservation genetics of the European brown bear—a study using excremental PCR of nuclear and mitochondrial sequences. Mol Ecol 4:95–103PubMedCrossRefGoogle Scholar
  36. Kojola I, Heikkinen S (2006) Structure of expanded brown bear population at the edge of range in Finland. Ann Zool Fenn 43:258–262Google Scholar
  37. Kojola I, Danilov PI, Laitala HM, Belkin V, Yakimov A (2003) Brown bear population structure in core and periphery: analysis of hunting statistics from Russian Karelia and Finland. Ursus 14:17–20Google Scholar
  38. Kolesnikov VV (2009) Monitoring of game animal resources, numbers and game bags in regions of Russia during 2008–2009 for population analysis. Kirov (in Russian). http://www.vniioz.kirov.ru/inst/structure/ohotres/otchet_2009.pdf. Accessed 11 Nov 2011
  39. Kolstad M, Mysterud I, Kvam T, Sorensen OJ, Wikan S (1986) Status of the brown bear in Norway—distribution and population 1978–82. Biol Conserv 38:79–99CrossRefGoogle Scholar
  40. Korsten M, Ho SYW, Davison J et al (2009) Sudden expansion of a single brown bear maternal lineage across northern continental Eurasia after the last ice age: a general demographic model for mammals? Mol Ecol 18:1963–1979PubMedCrossRefGoogle Scholar
  41. Latch EK, Dharmarajan G, Glaubitz JC, Rhodes OE (2006) Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv Genet 7:295–302CrossRefGoogle Scholar
  42. Linacre A, Gusmão L, Hecht W et al (2011) ISFG: recommendations regarding the use of non-human (animal) DNA in forensic genetic investigations. Forensic Sci Int Gen 5:501–505CrossRefGoogle Scholar
  43. Linden H, Danilov PI, Gromtsev AN et al (2000) Large-scale forest corridors to connect the taiga fauna to Fennoscandia. Wildl Biol 6:179–188Google Scholar
  44. Loiselle BA, Sork VL, Nason J, Graham C (1995) Spatial genetic-structure of a tropical understory shrub, Psychotria Officinalis (Rubiaceae). Am J Bot 82:1420–1425CrossRefGoogle Scholar
  45. Long ES, Diefenbach DR, Rosenberry CS, Wallingford BD, Grund MRD (2005) Forest cover influences dispersal distance of white-tailed deer. J Mamm 86:623–629CrossRefGoogle Scholar
  46. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  47. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  48. Miller CR, Waits LP (2003) The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation. Proc Natl Acad Sci USA 100:4334–4339PubMedCrossRefGoogle Scholar
  49. Mills LS, Allendorf FW (1996) The one-migrant-per-generation rule in conservation and management. Conserv Biol 10:1509–1518CrossRefGoogle Scholar
  50. Mills LS, Schwartz MK, Tallmon DA, Lair KP (2003) Measuring and interpreting connectivity for mammals in coniferous forests. In: Zabel CJ, Anthony RG (eds) Mammal community dynamics: management and conservation in the coniferous forests of western North America. Cambridge University Press, Cambridge, pp 587–613Google Scholar
  51. Musiani M, Leonhard JA, Cluff HD et al (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170PubMedCrossRefGoogle Scholar
  52. Nyholm ES (1990) Brown bear population and management in Finland in the 1980’s. Aquilo Ser Zool 27:27–31Google Scholar
  53. Nyholm ES, Nyholm KE (1999) Status and management of the brown bear in Finland. In: Servheen C, Herrero S, Peyton B (eds) Bears—status survey and conservation action plan. IUCN, Cambridge, pp 63–67Google Scholar
  54. Paetkau D, Strobeck C (1994) Microsatellite analysis of genetic-variation in black bear populations. Mol Ecol 3:489–495PubMedCrossRefGoogle Scholar
  55. Paetkau D, Strobeck C (1995) Microsatellite analysis of genetic-variation in black-bear populations. Mol Ecol 4:133CrossRefGoogle Scholar
  56. Paetkau D, Calvert W, Stirling I et al (1995) Microsatellite analysis of population-structure in Canadian polar bears. Mol Ecol 4:347–354PubMedCrossRefGoogle Scholar
  57. Pilot M, Jedrzejewski W, Branicki W et al (2006) Ecological factors influence population genetic structure of European grey wolves. Mol Ecol 15:4533–4553PubMedCrossRefGoogle Scholar
  58. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  59. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  60. Proctor MF, McLellan BN, Strobeck C, Barclay RMR (2005) Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc R Soc Lond B Biol 272:2409–2416CrossRefGoogle Scholar
  61. Pulliainen E (1983a) Expansion of the brown bear (Ursus arctos) into Finland from the east. Suomen Riista 30:71–78 (in Finnish with English summary)Google Scholar
  62. Pulliainen E (1983b) Behavior of an expanding population of the brown bear (Ursus arctos) in Northern Europe. Mamm Biol 48:290–297Google Scholar
  63. Pulliainen E (1990) Recolonization of Finland by the brown bear in the 1970s and 1980s. Aquilo Ser Zool 27:21–25Google Scholar
  64. Robinson SJ, Waits LP, Martin ID (2007) Evaluating population structure of black bears on the Kenai Peninsula using mitochondrial and nuclear DNA analyses. J Mamm 88:1288–1299CrossRefGoogle Scholar
  65. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106CrossRefGoogle Scholar
  66. Rousset F, Raymond M (1995) Testing heterozygote excess and deficiency. Genetics 140:1413–1419PubMedGoogle Scholar
  67. Rowe G, Beebee TJ (2007) Defining population boundaries: use of three Bayesian approaches with microsatellite data from British natterjack toads (Bufo calamita). Mol Ecol 16:785–796PubMedCrossRefGoogle Scholar
  68. Saarma U, Kojola I (2007) Matrilineal genetic structure of the brown bear population in Finland. Ursus 18:30–37CrossRefGoogle Scholar
  69. Saarma U, Ho SYW, Pybus OG et al (2007) Mitogenetic structure of brown bears (Ursus arctos L.) in northeastern Europe and a new time frame for the formation of European brown bear lineages. Mol Ecol 16:401–413PubMedCrossRefGoogle Scholar
  70. Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452CrossRefGoogle Scholar
  71. Schwartz MK, Mills LS, McKelvey KS, Ruggiero LF, Allendorf FW (2002) DNA reveals high dispersal synchronizing the population dynamics of Canada lynx. Nature 415:520–522PubMedCrossRefGoogle Scholar
  72. Smith DW, Peterson RO, Houston DB (2003) Yellowstone after wolves. Bioscience 53:330–340CrossRefGoogle Scholar
  73. Solberg KH, Bellemain E, Drageset OM, Taberlet P, Swenson JE (2006) An evaluation of field and non-invasive genetic methods to estimate brown bear (Ursus arctos) population size. Biol Conserv 128:158–168CrossRefGoogle Scholar
  74. Sørensen OJ, Swenson JE, Kvam T (1999) Status and management of the brown bear in Norway. In: Servheen C, Herrero S, Peyton B (eds) Bears—status survey and conservation action plan. IUCN, Cambridge, pp 86–89Google Scholar
  75. Spong G, Creel S (2001) Deriving dispersal distances from genetic data. Proc R Soc Lond B Biol 268:2571–2574CrossRefGoogle Scholar
  76. Stoen OG, Bellemain E, Saebo S, Swenson JE (2005) Kin-related spatial structure in brown bears Ursus arctos. Behav Ecol Sociobiol 59:191–197CrossRefGoogle Scholar
  77. Swenson JE, Wikan S (1996) A brown bear population estimate for Finnmark County, North Norway. Fauna Norv Ser A 17:11–15Google Scholar
  78. Swenson JE, Sandegren F, Bjarvall A et al (1994) Size, trend, distribution and conservation of the brown bear Ursus arctos population in Sweden. Biol Conserv 70:9–17CrossRefGoogle Scholar
  79. Swenson JE, Wabakken P, Sandegren F (1995) The near extinction and recovery of brown bears in Scandinavia in relation to the bear management policies of Norway and Sweden. Wildl Biol 1:11–25Google Scholar
  80. Swenson JE, Gerstl N, Dahle B, Zedrosser A (2000) Action plan for the conservation of the Brown Bear in Europe (Ursus arctos). Nature and environment, 114. Council of Europe, StrasbourgGoogle Scholar
  81. Swenson JE, Taberlet P, Bellemain E (2011) Genetics and conservation of European brown bears Ursus arctos. Mamm Rev 41:87–98CrossRefGoogle Scholar
  82. Taberlet P, Bouvet J (1994) Mitochondrial-DNA polymorphism, phylogeography, and conservation genetics of the brown bear Ursus arctos in Europe. Proc R Soc Lond B Biol 255:195–200CrossRefGoogle Scholar
  83. Taberlet P, Camarra JJ, Griffin S et al (1997) Noninvasive genetic tracking of the endangered Pyrenean brown bear population. Mol Ecol 6:869–876PubMedCrossRefGoogle Scholar
  84. Tallmon DA, Bellemain E, Swenson JE, Taberlet P (2004) Genetic monitoring of Scandinavian brown bear effective population size and immigration. J Wildl Manage 68:960–965CrossRefGoogle Scholar
  85. Tammeleht E, Remm J, Korsten M et al (2010) Genetic structure in large, continuous mammal populations: the example of brown bears in northwestern Eurasia. Mol Ecol 19:5359–5370PubMedCrossRefGoogle Scholar
  86. Valiere N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  87. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  88. Vila C, Sundqvist AK, Flagstad O et al (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B Biol 270:91–97CrossRefGoogle Scholar
  89. Wabakken P, Sand H, Liberg O, Bjarvall A (2001) The recovery, distribution, and population dynamics of wolves on the Scandinavian peninsula, 1978–1998. Can J Zool 79:710–725CrossRefGoogle Scholar
  90. Waits L, Taberlet P, Swenson JE, Sandegren F, Franzen R (2000) Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear (Ursus arctos). Mol Ecol 9:421–431PubMedCrossRefGoogle Scholar
  91. Wartiainen I, Tobiassen C, Brøseth H et al (2010) Populasjonsovervåkning av brunbjørn 2009–2012. DNA analyse av prøver samlet i Norge i 2009. Bioforsk Rapport 72. www.barentswatch.com/innhold/fauna/bjorn/Bioforsk_Rapport_72_2010_pdf. Accessed 11 Nov 2011
  92. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  93. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: F-ST not equal 1/(4Nm + 1). Heredity 82:117–125PubMedCrossRefGoogle Scholar
  94. Wikman M (2009) Monitoring game abundance in Finland in 2009. Riista ja kalatalous Selvityksiä 18:16–18Google Scholar
  95. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedGoogle Scholar
  96. Woods JG, Paetkau D, Lewis BN et al (1999) Genetic tagging of free-ranging black and brown bears. Wildl Soc B 27:616–627Google Scholar
  97. Wright S (1969) Evolution and the genetics of populations. Theory of gene frequencies, vol 2. University of Chicago Press, ChicagoGoogle Scholar
  98. Yamamoto K, Tsubota T, Komatsu T et al (2002) Sex identification of Japanese black bear, Ursus thibetanus japonicus, by PCR based on amelogenin gene. J Vet Med Sci 64:505–508PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Alexander Kopatz
    • 1
    • 2
    Email author
  • Hans Geir Eiken
    • 1
  • Snorre B. Hagen
    • 1
  • Minna Ruokonen
    • 2
  • Rodrigo Esparza-Salas
    • 2
  • Julia Schregel
    • 1
  • Ilpo Kojola
    • 3
  • Martin E. Smith
    • 1
  • Ingvild Wartiainen
    • 1
  • Paul E. Aspholm
    • 1
  • Steinar Wikan
    • 1
  • Alexander M. Rykov
    • 4
  • Olga Makarova
    • 5
  • Natalia Polikarpova
    • 5
  • Konstantin F. Tirronen
    • 6
  • Pjotr I. Danilov
    • 6
  • Jouni Aspi
    • 2
  1. 1.Bioforsk Soil and Environment, Svanhovd Norwegian Institute for Agricultural and Environmental ResearchSvanvikNorway
  2. 2.Department of BiologyUniversity of OuluOuluFinland
  3. 3.Finnish Game and Fisheries Research InstituteOulu Game and Fisheries ResearchOuluFinland
  4. 4.Pinezhsky Strict Nature ReservePinega, Arkhangelsk RegionRussia
  5. 5.Pasvik Strict Nature ReserveRajakoski, Murmansk RegionRussia
  6. 6.Institute of BiologyKarelian Research Centre of the Russian Academy of SciencePetrozavodskRussia

Personalised recommendations