Advertisement

Conservation Genetics

, Volume 13, Issue 2, pp 545–556 | Cite as

River fragmentation increases localized population genetic structure and enhances asymmetry of dispersal in bullhead (Cottus gobio)

  • Julian Junker
  • Armin Peter
  • Catherine E. Wagner
  • Salome Mwaiko
  • Brigitte Germann
  • Ole Seehausen
  • Irene Keller
Research Article

Abstract

Man-made habitat fragmentation is a major concern in river ecology and is expected to have particularly detrimental effects on aquatic species with limited dispersal abilities, like the bullhead (Cottus gobio). We used ten microsatellite markers to investigate small-scale patterns of gene flow, current dispersal and neutral genetic diversity in a morphologically diverse river where fragmented and unfragmented sections could be compared. We found high genetic differentiation between sampling sites with a maximum F ST of 0.32 between sites separated by only 35 km. A significant increase of genetic differentiation with geographical distance was observed in the continuous river section as well as in the full dataset which included headwater populations isolated by anthropogenic barriers. Several lines of evidence are consistent with the hypothesis that such barriers completely block upstream movement while downstream dispersal may be little affected. In the unfragmented habitat, dispersal rates were also higher in the direction of water flow than against it. The resulting asymmetry in gene flow likely contributes to the decrease of genetic variation observed from the lower reaches towards the headwaters, which is particularly pronounced in physically isolated populations. Our findings suggest that headwater populations, due to their isolation and low genetic variation, may be particularly vulnerable to extinction.

Keywords

Fragmentation Microsatellites Bullhead Cottus gobio Population genetic structure Conservation 

Notes

Acknowledgments

Special thanks go to Christina Riedl, Laura Langeloh and Reto Haas for their valuable help during fieldwork. We thank the local fisheries authorities of Bern and Fribourg for their support of this project. We are also grateful to the members of the River Management project and special thanks go to all the people at Fishec, who have always been very supportive. We would also like to thank E. E. Nielsen and three anonymous reviewers for their valuable input. This project was financially supported by EAWAG through an action field grant to AP and IK.

Supplementary material

10592_2011_306_MOESM1_ESM.docx (64 kb)
Supplementary material 1 (DOCX 64 kb)

References

  1. Adamicka P (1979) Zwei Vorurteile über die Schädlichkeit von Koppen und Kaulquappen. Österreichs Fischerei 32:162–164Google Scholar
  2. Adamicka P (1984) Neues vom ‘argen Laichräuber’ (Cottus gobio). Österreichs Fischerei 31:334–336Google Scholar
  3. Anderson EC, Dunham KK (2008) The influence of family groups on inferences made with the program Structure. Mol Ecol Resour 8:1219–1229PubMedCrossRefGoogle Scholar
  4. Andreasson S (1971) Feeding habits of a sculpin (Cottus gobio L. Pisces) population. Report of the institute of freshwater research, Drottningholm, Sweden, 51: 5–30Google Scholar
  5. Barandun J (1990) Auswirkungen von ausbreitungsobstruktionen auf das Vorkommen von Groppen (Cottus gobio) — Anregungen für den Artenschutz. Natur und Landschaft 65:66–68Google Scholar
  6. Bisazza A, Marconato A (1988) Female mate choice, male–male competition and parental care in the river bullhead, Cottus gobio L. (Pisces, Cottidae). Anim Behav 36:1352–1360CrossRefGoogle Scholar
  7. Bless R (1981) Untersuchungen zum Einfluss von gewässerbaulichen Massnahmen auf die Fischfauna in Mittelgebirgsbächen. Natur und Landschaft 56:243–252Google Scholar
  8. Bless R (1990) Die Bedeutung von gewässerbaulichen Hindernissen im Raum-Zeit-System der Groppe (Cottus gobio L.). Natur und Landschaft 65:581–585Google Scholar
  9. Bucher F, Hofer R, Salvenmoser W (1992) Effects of treated paper mill effluents on hepatic morphology in male bullhead (Cottus gobio L.). Arch Environ Contam Toxicol 23:410–419CrossRefGoogle Scholar
  10. Caldera EJ, Bolnick DI (2008) Effects of colonization history and landscape structure on genetic variation within and among threespine stickleback (Gasterosteus aculeatus) populations in a single watershed. Evol Ecol Res 10:575–598Google Scholar
  11. Cavalli-Sforza LL, Edwards AW (1967) Phylogenetic analysis. Models and estimation procedures. Am J Hum Genet 19:233–257PubMedGoogle Scholar
  12. Downhower JF, Lejeune P, Gaudin P, Brown L (1990) Movements of the chabot (Cottus gobio) in a small stream. Polskie Archiwum Hydrobiologii 37:119–126Google Scholar
  13. Elliot JM (1981) Some aspects of thermal tolerance of freshwater teleosts. In: Pickering AD (ed) Stress and fish. Academic Press, UK, pp 209–245Google Scholar
  14. Englbrecht CC, Largiadèr CR, Hänfling B, Tautz D (1999) Isolation and characterization of polymorphic microsatellite loci in the European bullhead Cottus gobio L. (Osteichthyes) and their applicability to related taxa. Mol Ecol 8:1966–1969PubMedCrossRefGoogle Scholar
  15. Englbrecht CC, Freyhof J, Nolte A, Rassmann K, Schliewen U, Tautz D (2000) Phylogeography of the bullhead Cottus gobio (Pisces: Teleostei: Cottidae) suggests a pre-pleistocene origin of the major central European populations. Mol Ecol 9:709–722PubMedCrossRefGoogle Scholar
  16. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1:47–50Google Scholar
  17. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of range expansions. Ann Rev Eco Evol Syst 40:481–501CrossRefGoogle Scholar
  18. Faubet P, Waples RS, Gaggotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166PubMedCrossRefGoogle Scholar
  19. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, SeattleGoogle Scholar
  20. Frankel OH, Soule M (1981) Conservation and Evolution. Cambridge University Press, CambridgeGoogle Scholar
  21. Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107CrossRefGoogle Scholar
  22. Gädtgens A (1989) Die Rolle der Groppe (Cottus gobio L.) als Konsument des Zoobenthos im Ökosystem eines Mittelgebirgs-baches (Steine/Schwarzwald). Diplomarbeit. Fakultät für Biologie der Universität Konstanz 62Google Scholar
  23. Gaudin P (1985) Predation Exercée par le Chabot (Cottus gobio L.) sur I’Alevin de Truite Commune (Salmo trutta l.): taille maximale de capture des alevins par les chabots. Hydrobiologia 122:267–270CrossRefGoogle Scholar
  24. Gaudin P, Caillere L (1990) Microdistribution of Cottus gobio L. and fry of Salmotrutta in a first order stream. Pol Arch Hydrobiol 37:81–93Google Scholar
  25. Gaudin P, Heland M (1984) Influenced‘Adultes de Chabots (Cottus gobio L.) sur des Alevins de TruiteCommune (SalmotruttaL.): etude experimentale en milieux semi-naturels. Aria Oecol 5:71–83Google Scholar
  26. Goldmann K (1993) Einfluss von Querbauwerken in einem voralpinen Fliessgewässer auf die Fischpopulationen. Diplomarbeit, Albert-Ludwigs-Universität Freiburg im Breisgau, Fakultät für BiologieGoogle Scholar
  27. Goslee SC, Urban DL (2007) The ecodist package for dissimilarity-based analysis of ecological data. J Stat Softw 22:1–19Google Scholar
  28. Goudet J (1995) Fstat (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  29. Hänfling B, Weetman D (2006) Concordant genetic estimators of migration reveal anthropogenically enhanced source-sink population structure in the river sculpin Cottus gobio. Genetics 173:1487–1501PubMedCrossRefGoogle Scholar
  30. Hänfling B, Hellemans B, Volckaert FAM, Carvalho GR (2002) Late glacial history of the cold-adapted freshwater fish Cottus gobio, revealed by microsatellites. Mol Ecol 11:1717–1729PubMedCrossRefGoogle Scholar
  31. Hansen MM, Nielsen EE, Mensberg KLD (1997) The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L. Mol Ecol 6:469–474CrossRefGoogle Scholar
  32. Hofer R, Bucher F (1991) Zur Biologie und Gefährdung der Koppe. Österreichs Fischerei 44:158–161Google Scholar
  33. Jones OR, Wang J (2010) Colony: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555PubMedCrossRefGoogle Scholar
  34. Jungwirth M (1996) Bypass channels at weirs as appropriate aids for fish migration in lithoral rivers. Regul Rivers: Res Manag 12:483–492CrossRefGoogle Scholar
  35. Kellander M, Riley M, Liu CS (2002) GeneMarker® Software for Multiplex Ligation-dependent Probe Amplification (MLPA)Google Scholar
  36. Keller I, Nentwig W, Largiadèr CR (2004) Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle. Mol Ecol 13:2983–2994PubMedCrossRefGoogle Scholar
  37. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890Google Scholar
  38. Knaepkens G, Knapen D, Bervoets L, Hänfling B, Verheyen E, Eens M (2002) Genetic diversity and condition factor: a significant relationship in Flemish but not in German populations of the European bullhead (Cottus gobio L.). Heredity 89:280–287PubMedCrossRefGoogle Scholar
  39. Knaepkens G, Bruyndoncx L, Eens M (2004a) Assessment of residency and movement of the endangered bullhead (Cottus gobio) in two Flemish rivers. Ecol Freshw Fish 13:317–322CrossRefGoogle Scholar
  40. Knaepkens G, Bruyndoncx L, Coeck J, Eens M (2004b) Spawning habitat enhancement in the European bullhead (Cottus gobio), an endangered freshwater fish in degraded lowland rivers. Biodivers Conserv 13:2443–2452CrossRefGoogle Scholar
  41. Letcher BH, Nislow KH, Coombs JA, O’Donnell MJ, Dubreuil TL (2007) Population response to habitat fragmentation in a stream-dwelling brook trout population. PLoS ONE 2(11):e1139PubMedCrossRefGoogle Scholar
  42. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  43. Meirmans PG, Van Tienderen PH (2004) GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794CrossRefGoogle Scholar
  44. Meldgaard T, Nielsen EE, Loeschcke V (2003) Fragmentation by Weirs in a Riverine system: a study of genetic variation in time and space among populations of European grayling (Thymallus thymallus) in a Danish river system. Conserv Genet 4:735–747CrossRefGoogle Scholar
  45. Müller K (1954) Investigations on the organic drift in North Swedish streams. Inst Freshw Res Rep 34:133–149Google Scholar
  46. Nolte AW, Freyhof J, Stemshorn KC, Tautz D (2005a) An invasive lineage of sculpins, Cottus sp (Pisces, Teleostei) in the Rhine with new habitat adaptations has originated from hybridization between old phylogeographic groups. Proc Royal Soc B 272:2379–2387CrossRefGoogle Scholar
  47. Nolte AW, Stemshorn KC, Tautz D (2005b) Direct cloning of microsatellite loci from Cottus gobio through a simplified enrichment procedure. Mol Ecol Notes 5:628–636CrossRefGoogle Scholar
  48. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  49. Peterka J, Vašek M, Kubečka J, Hladík M, Hohausová E (2004) Drift of juveniles after riverine spawning of fishes from the Římov reservoir, Czech Republic. Ecohydrol Hydrobiol 4(4):459–468Google Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  51. Raeymaekers JAM, Raeymaekers D, Koizumi I, Geldof S, Volckaert FAM (2009) Guidelines for restoring connectivity around water mills: a population genetic approach to the management of riverine fish. J Appl Ecol 46:562–571CrossRefGoogle Scholar
  52. R Development Core Team (2010) R: a language and environment for statistical computing. R foundation for statistical computing. Vienna, Austria. http://www.R-project.org
  53. Rosenzweig ML (2001) Loss of speciation rate will impoverish future diversity. Proc Natl Acad Sci USA 98(10):5404–5410PubMedCrossRefGoogle Scholar
  54. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  55. Sala OE, Stuart Chapin III F, Armesto JJ et al (2000) Global biodiversity scenarios for the year 2100. Science 287(5459):1770–1774PubMedCrossRefGoogle Scholar
  56. Segelbacher G, Cushman SA, Epperson BK, Fortin MJ, Francois O, Hardy OJ, Holderegger R, Taberlet P, Waits LP, Manel S (2010) Applications of landscape genetics in conservation biology: concepts and challenges. Conserv Genet 11:375–385CrossRefGoogle Scholar
  57. Smyly WJP (1957) The life-history of the bullhead or miller’s thumb (Cottus gobio L.). Proc Zool Soc Lond 128:431–453Google Scholar
  58. Späh H, Beisenherz W (1984) Beitrag zur Ökologie und Verbreitung der Groppe (Cottus gobio, Pisces) in Ostwestfalen und in Osnabrück (Niedersachsen). Verh Ges Ökologie 12:617–626Google Scholar
  59. Starmach J (1965) Koppen in den Karpathenflüssen: II. Auftreten und Charakteristik der Buntflossenkoppe (Cottus poecilopus Heckel) und Weissflossigen Koppe (Cottus gobio L.) in Raba Flussgebiet. Acta Hydrobiol 7:109–140Google Scholar
  60. Tudorache C, Viaene P, Blust R, Vereecken H, De Boeck G (2008) A comparison of swimming capacity and energy use in seven European freshwater fish species. Ecol Freshw Fish 17:284–291CrossRefGoogle Scholar
  61. Utzinger J, Roth C, Peter A (1998) Effects of environmental parameters on the distribution of bullhead Cottus gobio with particular consideration of the effects of obstructions. J Appl Ecol 35:882–892CrossRefGoogle Scholar
  62. Vonlanthen P, Excoffier L, Bittner D, Persat H, Neuenschwander S, Largiader CR (2007) Genetic analysis of potential postglacial watershed crossings in Central Europe by the bullhead (Cottus gobio L.). Mol Ecol 16:4572–4584PubMedCrossRefGoogle Scholar
  63. Waters TF (1972) Drift of stream insects. Annu Rev Entomol 17:253–272CrossRefGoogle Scholar
  64. Waterstraat A (1992) Investigations on the ecology of Cottus gobio L. and other fish species from two lowland streams of Northern Germany. Limnologica 22:137–149Google Scholar
  65. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  66. Williams BL, Brawn JD, Page KN (2003) Landscape Scale genetic effects of habitat fragmentation on a high gene flow species: Speyeriaidalia (Nymphalidae). Mol Ecol 12:11–20PubMedCrossRefGoogle Scholar
  67. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedGoogle Scholar
  68. Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial-temporal changes in gene frequencies. Conserv Genet 5:529–538CrossRefGoogle Scholar
  69. Zaugg B, Stucki P, Pedroli JC, Kirchhofer A (2003) Pisces Atlas. Fauna Helvetica 7Google Scholar
  70. Zeh Weissmann H, Könitzer C, Bertiller A (2009) Strukturen der Fliessgewässer in der Schweiz. Zustand von Sohle, Ufer und Umland (Ökomorphologie); Ergebnisse der Ökomorphologi-schen Kartierung. Stand: April 2009. Umwelt-Zustand Nr. 0926Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Julian Junker
    • 1
    • 3
  • Armin Peter
    • 1
  • Catherine E. Wagner
    • 1
    • 4
  • Salome Mwaiko
    • 1
  • Brigitte Germann
    • 1
  • Ole Seehausen
    • 1
    • 3
  • Irene Keller
    • 1
    • 2
  1. 1.Center of Ecology, Evolution and Biochemistry, Department of Fish Ecology and EvolutionEAWAG Swiss Federal Institute of Aquatic Science and TechnologyKastanienbaumSwitzerland
  2. 2.Department of Aquatic EcologyEAWAG Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  3. 3.Department of Aquatic Ecology and Macroevolution, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  4. 4.Department of Ecology and Evolutionary BiologyCorson Hall, Cornell UniversityIthacaUSA

Personalised recommendations