Conservation Genetics

, Volume 13, Issue 2, pp 499–507 | Cite as

Genetic signature of a severe forest fire on the endangered Gran Canaria blue chaffinch (Fringilla teydea polatzeki)

  • N. M. Suárez
  • E. Betancor
  • R. Fregel
  • F. Rodríguez
  • J. Pestano
Research Article


Habitat destruction has been identified as one of the main threats to biodiversity. Among all factors causing habitat disturbance, wildfire is recognized as one of the most important ecological forces that influences not only the physical environment, but also the structure and composition of floral and faunal communities. These processes are often translated in population bottlenecks, which occur frequently in threatened species and result in loss of genetic diversity and evolutionary potential. In this study, we analyzed the genetic consequences of a demographic bottleneck produced by a forest fire that reduced the population of the endangered blue chaffinch (Fringilla teydea polatzeki), which inhabits the island of Gran Canaria, to approximately 122 individuals. Analysis of nine microsatellite loci revealed that, while a decline in census was observed during the bottleneck, there was no observed excess of heterozygosity or evidence of a decline in allelic richness, two characteristic bottleneck signatures. On the contrary, we observed that the Gran Canaria blue chaffinch has retained significant levels of genetic diversity and shows no evidence of an increased level of inbreeding (FIS) either before or after the bottleneck. The results from this study have important implications for the conservation of this endangered subspecies and provide insights concerning management strategies to prevent its extinction.


Blue chaffinch Bottleneck Endangered Fringilla teydea Gran Canaria Microsatellite Wildfire 



We are grateful to Monik Almeida, Yessi Lara, Almudena Ramos and Javi Rivero for laboratory assistance. The European Commission project LIFE98NAT/E/5354 and the Canary Islands Government Vice-council of the Environment co-financed part of this study. We also express our thanks to Ángel Moreno for help with sample collection and the design of Fig. 1, Tony Sánchez for giving us permission to use his F. t. polatzeki picture and Susan Cranfield for language correction. Vicente Cabrera and two anonymous reviewers provided useful criticisms of an earlier version of the manuscript.


  1. Allendorf FW, Leary RF (1986) Heterozygosity and fitness in natural populations of animals. In: Soulé ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates Inc, Sunderland, pp 57–76Google Scholar
  2. Arden SL, Lambert DM (1997) Is the black robin in genetic peril? Mol Ecol 6:21–28CrossRefGoogle Scholar
  3. Barrientos R, Kvist L, Barbosa A, Valera F, López-Iborra GM, Moreno E (2009) Colonization patterns and genetic structure of peripheral populations of the trumpeter finch (Bucanetes githagineus) from Northwest Africa, the Canary Islands and the Iberian Peninsula. J Biogeogr 36:210–219CrossRefGoogle Scholar
  4. Berthier K, Charbonnel N, Galan M, Chaval Y, Cosson JF (2006) Migration and recovery of the genetic diversity during the increasing density phase in cyclic vole populations. Mol Ecol 15:2665–2676PubMedCrossRefGoogle Scholar
  5. Busch JD, Waser PM, DeWoody JA (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2462PubMedCrossRefGoogle Scholar
  6. Carrascal LM, Seoane J (2008) Método de censo y estima de población del pinzón azul de Gran Canaria.
  7. Chan CH, Robertson HA, Saul EK, Nia LV, Luong VP, Kong X, Zhao Y, Chambers GK (2011) Genetic variation in the kakerori (Pomarea dimidiata), an endangered endemic bird successfully recovering in the Cook Islands. Conserv Genet 12:441–447CrossRefGoogle Scholar
  8. Climent J, Tapias R, Pardos JA, Gil L (2004) Fire adaptation in the Canary Islands pine (Pinus canariensis). Plant Ecol 171:185–196CrossRefGoogle Scholar
  9. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  10. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper & Row, New YorkGoogle Scholar
  11. Di Rienzo A, Peterson A, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170PubMedCrossRefGoogle Scholar
  12. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169CrossRefGoogle Scholar
  13. Evans SR, Sheldon BC (2008) Interspecific patterns of genetic diversity in birds: correlations with extinction risk. Conserv Biol 22:1016–1025PubMedCrossRefGoogle Scholar
  14. Excoffier LGL, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50Google Scholar
  15. Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16:265–280CrossRefGoogle Scholar
  16. Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, CambridgeGoogle Scholar
  17. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  18. Fuerst PA, Maruyama T (1986) Considerations on the conservation of alleles and of genic heterozygosity in small managed populations. Zoo Biol 5:171–179CrossRefGoogle Scholar
  19. Garcia-del-Rey E, Otto R, Fernández-Palacios JM (2010) Effects of wildfire on endemic breeding birds in a Pinus canariensis forest of Tenerife, Canary Islands. Ecoscience 17:298–311CrossRefGoogle Scholar
  20. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318PubMedCrossRefGoogle Scholar
  21. Goudet J (1995) FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  22. Hutto RL (2008) The ecological importance of severe wildfires: some like it hot. Ecol Appl 18:1827–1834PubMedCrossRefGoogle Scholar
  23. IUCN (2010) IUCN red list of threatened species. Version 2010.4.
  24. Jamieson IG (2007) Has the debate over genetics and extinction of island endemics truly been resolved? Anim Conserv 10:139–144CrossRefGoogle Scholar
  25. Jamieson IG (2010) Founder effects, inbreeding, and loss of genetic diversity in four avian reintroduction programs. Conserv Biol 25:115–123PubMedCrossRefGoogle Scholar
  26. Jamieson IG, Wallis GP, Briskie JV (2006) Inbreeding and endangered species management: is New Zealand out of step with the rest of the world? Conserv Biol 20:38–47PubMedCrossRefGoogle Scholar
  27. Johnson JA, Tingay RE, Culver M, Hailer F, Clarke ML, Mindell DP (2009) Long-term survival despite low genetic diversity in the critically endangered Madagascar Fish-eagle. Mol Ecol 18:54–63PubMedGoogle Scholar
  28. Keller L, Jeffery KJ, Arcese P, Beaumont MA, Hochachka WM, Smith JNM, Bruford MW (2001) Immigration and the ephemerality of a natural population bottleneck: evidence from molecular markers. Proc R Soc Lond B 268:1387–1394CrossRefGoogle Scholar
  29. Lambert DM, King T, Shepherd LD, Livingston A, Anderson S, Craig JL (2005) Serial population bottlenecks and genetic variation: translocated populations of the New Zealand saddleback (Philesturnus carunculatus rufusater). Conserv Genet 6:1–14CrossRefGoogle Scholar
  30. Lauretto M, Nakano F, Faria S Jr (2009) A straightforward multiallelic significance test for the Hardy–Weinberg equilibrium law. Genet Mol Biol 32:619–625PubMedCrossRefGoogle Scholar
  31. Leberg PL (1992) Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis. Evolution 46:477–494CrossRefGoogle Scholar
  32. Luikart G, Cornuet JM (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237CrossRefGoogle Scholar
  33. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  34. Martín A, Lorenzo JA (2001) Aves del Archipiélago Canario. Lemus Editor, La LagunaGoogle Scholar
  35. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. III. Genic homozygosity in populations which experience periodic bottlenecks. Genetics 111:691–703PubMedGoogle Scholar
  36. McEachern MB, Van Vuren DH, Floyd CH, May B, Eadie JM (2011) Bottlenecks and rescue effects in a fluctuating population of golden-mantled ground squirrels (Spermophilus lateralis). Conserv Genet 12:285–296CrossRefGoogle Scholar
  37. Moneglia P, Besnard A, Thibault J-C, Prodon R (2009) Habitat selection of the Corsican Nuthatch (Sitta whiteheadi) after a fire. J Ornithol 150:577–583CrossRefGoogle Scholar
  38. Nei M, Maruyama T, Chakraborty R (1975) Bottleneck effect and genetic variability in populations. Evolution 29:1–10CrossRefGoogle Scholar
  39. Ortego J, Calabuig G, Aparicio JM, Cordero PJ (2008) Genetic consequences of natal dispersal in the colonial lesser kestrel. Mol Ecol 17:2051–2059PubMedCrossRefGoogle Scholar
  40. Pérez-de-Paz PL, Salas M, Rodríguez O, Acebes JR, Del Arco MJ, Wilpredt W (1994) Atlas cartográfico de los pinares canarios: IV. Gran Canaria y plantaciones de Fuerteventura y Lanzarote. Viceconsejería de Medio Ambiente. Gobierno de Canarias, Santa Cruz de TenerifeGoogle Scholar
  41. Perrin N, Goudet J (2001) Inbreeding, kinship and the evolution of natal dispersal. In: Clobert J, Danchin E, Dhondt AA, Nichols JD (eds) Dispersal. Oxford University Press, OxfordGoogle Scholar
  42. Pestano J, Brown RP, Rodríguez F, Moreno A (2000) Mitochondrial DNA control region diversity in the endangered blue chaffinch, Fringilla teydea. Mol Ecol 9:1421–1425PubMedCrossRefGoogle Scholar
  43. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  44. Queney G, Ferrand N, Marchandeau S, Azevedo M, Mougel F, Branco M, Monnerot M (2000) Absence of a genetic bottleneck in a wild rabbit (Oryctolagus cuniculus) population exposed to a severe viral epizootic. Mol Ecol 9:1253–1264PubMedCrossRefGoogle Scholar
  45. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  46. Rodríguez F, Moreno A (2004) Pinzón Azul de Gran Canaria, Fringilla teydea polatzeki. In: Madroño A, González C, Atienza JC (eds) Libro Rojo de las Aves de España. Dirección General para la Biodiversidad-SEO/BirdLife, MadridGoogle Scholar
  47. Rodríguez F, Moreno A (2008) Breeding biology of the endangered Blue Chaffinch Fringilla teydea polatzeki in Gran Canaria (Canary Islands). Acta Ornithol 43:207–215CrossRefGoogle Scholar
  48. Rousset F (2008) GENEPOP ‘ 007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106PubMedCrossRefGoogle Scholar
  49. Smith JK (2000) Wildland fire in ecosystems: effect of fire on fauna. USDA forest service general technical report RMRS-GTR-42, vol 1. Rocky Mountain Research Station, OgdenGoogle Scholar
  50. Smucker KM, Hutto RL, Steele BM (2005) Changes in bird abundance after wildfire: importance of fire severity and time since fire. Ecol Appl 15:1535–1549CrossRefGoogle Scholar
  51. Spencer CC, Neigel JE, Leberg PL (2000) Experimental evaluation of the usefulness of microsatellite DNA for detecting demographic bottlenecks. Mol Ecol 9:1517–1528PubMedCrossRefGoogle Scholar
  52. Suárez NM, González A, Betancor E, Pestano JJ (2009a) Microsatellite loci isolation in the endangered Gran Canarian blue chaffinch (Fringilla teydea polatzeki) and their utility in closely related taxa. Conserv Genet 10:581–583CrossRefGoogle Scholar
  53. Suárez NM, Betancor E, Klassert TE, Almeida T, Hernández M, Pestano JJ (2009b) Phylogeography and genetic structure of the Canarian common chaffinch (Fringilla coelebs) inferred with mtDNA and microsatellite loci. Mol Phylogenet Evol 53:556–564PubMedCrossRefGoogle Scholar
  54. Thibault JC, Prodon R (2006) Seed predation by birds shortly after a wildfire in a Corsican pine forest. Int J Wildland Fire 15:81–86CrossRefGoogle Scholar
  55. Tracy LN, Wallis GP, Efford MG, Jamieson IG (2011) Preserving genetic diversity in threatened species reintroduction: how many individuals should be released? Anim Conserv. doi: 10.1111/j.1469-1795.2011.00448.x
  56. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  57. Vilá C, Sundqvist AK, Flagstad Ø, Seddon J, Björnerfeldt S, Kojola I, Casulli A, Sand H, Wabakken P, Ellegren H (2003) Rescue of a severely bottlenecked wolf (Canis lupus) population by a single immigrant. Proc R Soc Lond B 270:91–97CrossRefGoogle Scholar
  58. Waldman JR, Bender RE, Wirgin II (1998) Multiple population bottlenecks and DNA diversity in populations of wild striped bass, Morone saxatilis. Fish Bull 96:614–620Google Scholar
  59. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370CrossRefGoogle Scholar
  60. Wright S (1931) Evolution in Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar
  61. Wright S (1951) The genetical structure of populations. Ann Eugen Soc 15:323–354CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • N. M. Suárez
    • 1
  • E. Betancor
    • 1
  • R. Fregel
    • 1
  • F. Rodríguez
    • 2
  • J. Pestano
    • 1
  1. 1.Departamento de Genética, Facultad de MedicinaUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Biodiversity ServiceGobierno de CanariasLas Palmas de Gran CanariaSpain

Personalised recommendations