Conservation Genetics

, Volume 12, Issue 6, pp 1575–1588 | Cite as

Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation

  • S. M. MuyaEmail author
  • M. W. Bruford
  • A. W.-T. Muigai
  • Z. B. Osiemo
  • E. Mwachiro
  • B. Okita-Ouma
  • B. Goossens
Research Article


Kenya’s black rhinoceros population declined by more than 98% from 20,000 individuals in the 1970s to around 400 individuals in 1990 due to the effects of poaching, at which time the surviving individuals were isolated in a series of demographically inviable subpopulations. An initial management exercise translocated the survivors into four high security sanctuaries to control poaching and enhance breeding, and this measure successfully arrested the decline. Subsequently, new sanctuaries were established and the metapopulation size reached 650 animals by 2008. However, translocations and the current management strategy that partitions the metapopulation into ‘montane’ and ‘lowland’ rhinoceros may have substantial consequences at the population level and their impact on population genetic diversity has not been investigated. In this study, 12 of the 16 extant subpopulations were analysed using 408 bp of mitochondrial control region sequence (n = 170) and nine microsatellite loci (n = 145). Both markers detected moderate to high genetic diversity (h = 0.78 ± 0.027, n = 170; HO = 0.70 ± 0.087, n = 145) consistent with previous studies on Diceros bicornis michaeli. However, mtDNA and nDNA diversity varied substantially between subpopulations. The results suggest that the Masai Mara is more differentiated, inbred and isolated than other subpopulations. It also suggests that there are neither distinct montane and lowland groups nor other detectable historical barriers to gene flow. Instead the large majority of genetic diversity was partitioned at the level of individuals; highlighting the need to conserve as many individuals as possible. Future translocations should consider the genetic profile of individuals and the demographic history of both the donor and recipient subpopulations.


Black rhinoceros Conservation genetics Microsatellites Population fragmentation Translocation 



This research was funded by the following Institutions: Jomo Kenyatta University of Agriculture and Technology, Commonwealth Scholarship Commission, US Fish and Wildlife Rhinoceros and Tiger Conservation Fund, Cardiff University and the Kenya Wildlife Service. We would like to specifically express our gratitude to Mireille Johnson-Bawe of Cardiff University, Antony Wandera and Patrick Omondi from Kenya Wildlife Service and Corynne Mulcahy and Lindsey Nielsen from Cummings School of Veterinary Medicine, Tufts University, North Grafton, MA, USA. Kenya Wildlife Service (Export Permit No. 003105), CITES (Permit No. 304050/01), and the Department for Environment, Food and Rural Affairs of UK (Licence No. PATH/22/2007/1) gave us permission to export and/or import black rhinoceros samples from Kenya to United Kingdom.


  1. Akama JS (1998) The evolution of wildlife conservation policies in Kenya. Association of Third World Studies, Inc, Nairobi, pp 1–11Google Scholar
  2. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, MaldenGoogle Scholar
  3. Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search tool. J Mol Biol 215:403–410PubMedGoogle Scholar
  4. Applied Biosystems (2010) Peak scanner software. Applied BiosystemsGoogle Scholar
  5. Ashley MV, Melnick DJ, Western D (1990) Conservation genetics of the Black Rhinoceros (Diceros bicornis). I: evidence from the mitochondrial DNA of three populations. Conserv Biol 4:71–77CrossRefGoogle Scholar
  6. Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New YorkCrossRefGoogle Scholar
  7. Bandelt HJ, Forster P, Sykes BC, Richards MB (1995) Mitochondrial portraits of human populations. Genetics 141:743–753Google Scholar
  8. Barclay EN (1932) Big game shooting records; together with biographical notes and anecdotes on the most prominent big game hunters of ancient and modern times. H.F. & G. Witherby, LondonGoogle Scholar
  9. Beaumont MA, Storz JF (2002) Testing for genetic evidence of population expansion and contraction: an empirical analysis of microsatellite DNA variation using a hierarchical bayesian model. Evolution 56:154–166PubMedGoogle Scholar
  10. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France)Google Scholar
  11. Bergl RA, Bradley JB, Nsubuga A, Vigilant L (2008) Effects of habitat fragmentation, population size and demographic history on genetic diversity: the Cross River gorilla in a comparative context. Am J Primatol 70:848–859PubMedCrossRefGoogle Scholar
  12. Birky CW, Fuerst P, Maruyama T (1989) Organelle gene diversity under migration, mutation, and drift—equilibrium expectations, approach to equilibrium, effects of heteroplasmic cells, and comparison to nuclear genes. Genetics 121:613–627PubMedGoogle Scholar
  13. Brett RA (1993) Conservation strategy and management plan for the black rhinoceros (Diceros bicornis) in Kenya: rhino conservation programme. Sponsored by the Zoological Society of London, p 69Google Scholar
  14. Brian JS (2007) boa: an R package for MCMC output convergence assessment and posterior inference. J Stat Softw 21:1–37Google Scholar
  15. Brown SM, Houlden BA (1999) Isolation and characterization of microsatellite markers in the black rhinoceros (Diceros bicornis). Mol Ecol 8:1559–1561PubMedCrossRefGoogle Scholar
  16. Brown SM, Houlden BA (2000) Conservation genetics of the black rhinoceros (Diceros bicornis). Conserv Genet 1:365–370CrossRefGoogle Scholar
  17. Ciofi C, Beaumont MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc Lond B 266:2269–2274CrossRefGoogle Scholar
  18. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  19. Cunningham J, Harley EH, O’Ryan C (1999) Isolation and characterisation of microsatellite loci in black rhinoceros (Diceros bicornis). Electrophoresis 20:1778–1780PubMedCrossRefGoogle Scholar
  20. Dean C, Foose TJ (2006) The threat to rhino’s survival. In: Blumer E, Lukas J, Foose TJ (eds) The North American save the Rhinos campaing. International Rhino Foundation, FloridaGoogle Scholar
  21. Emslie R, Brooks M (1999) African Rhino. status survey and conservation action plan. IUCN/SSC African Rhino Specialist Group, IUCN, Gland, Switzerland and Cambridge, UKGoogle Scholar
  22. Emslie RH, Amin R, Kock R (2009) Guidelines for the in situ Re-introduction and translocation of African and Asian Rhinoceros. IUCN, Gland, SwitzerlandGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  24. Excoffier L, Laval L, Schneider S (2005) Arlequin ver. 3.1.1: an integrated software package for population genetics data analysis. Evol Bioinf 1:47–50Google Scholar
  25. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure from multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  26. Foster C, Aswath K, Chanock S, McKay H, Peters U (2006) Polymorphism analysis of six selenoprotein genes: support for a selective sweep at the glutathione peroxidase 1 locus (3p21) in Asian populations. BMC Genetics 7:56PubMedCrossRefGoogle Scholar
  27. Frankham R, Balloua JD, Briscoe DA (2002) Introduction to conservation genetics, 1st edn. Cambridge University Press, CambridgeGoogle Scholar
  28. Gakahu CG (1993) African rhinos: current numbers and distribution. Zoological Society of San Diego, San Diego, pp 160–163Google Scholar
  29. Garnier JN, Bruford MW, Goossens B (2001) Mating system and reproductive skew in black rhinoceros. Mol Ecol 10:2031–2041PubMedCrossRefGoogle Scholar
  30. Gene Codes Corporation (1988) An international software firm specializing in bioinformatics software for DNA sequence analysis. Ann Arbor, MichiganGoogle Scholar
  31. Goodman SJ, Tamate HB, Rea Wilson (2001) Bottlenecks, drift and differentiation: the population structure and demographic history of sika deer (Cervus nippon) in the Japanese archipelago. Mol Ecol 10:357–1370CrossRefGoogle Scholar
  32. Harley EH, Baumgarten I, Cunningham J, O’Ryan C (2005) Genetic variation and population structure in remnant populations of black rhinoceros, Diceros bicornis, in Africa. Mol Ecol 14:2981–2990PubMedCrossRefGoogle Scholar
  33. Hoarau G, Piquet AM-T, van der Veer HW et al (2004) Population structure of plaice (Pleuronectes platessa L.) in northern Europe: a comparison of resolving power between microsatellites and mitochondrial DNA data. J Sea Res 51:183–190CrossRefGoogle Scholar
  34. Hunter JA (1952) Hunter. Hamish Hamilton London, LondonGoogle Scholar
  35. IUCN (2008) IUCN red list of threatened species. IUCNGoogle Scholar
  36. IUCN SSC AfRSG (2008) Diceros bicornis. In: 2008 IUCN red list of threatened species. IUCN 2008Google Scholar
  37. Jama M, Zhand Y, Aman RA, Ryder OA (1993) Sequence of the mitochondrial control region, tRNAThr, tRNAPro and tRNAPhe gene from the black rhinoceros, Diceros bicornis. Nucleic Acids Res 21:4392PubMedCrossRefGoogle Scholar
  38. Laroche L, Durand JD (2004) Genetic structure of fragmented populations of a threatened endemic percid of the Rhône river: Zingel asper. Heredity 92:329–334PubMedCrossRefGoogle Scholar
  39. Lloyd-Jones L, Brevet-Major W (1925) “Havash”! frontier adventures in Kenya: big game hunting with the king’s African rifles. Arrowsmith, LondonGoogle Scholar
  40. Long JC (1986) The allelic correlation structure of Gainj- and Kalam-speaking people. I. The estimation and interpretation of Wright’s F-statistics. Genetics 112:629–647PubMedGoogle Scholar
  41. Marker LL, Wilkerson AJP, Sarno RJ et al (2008) Molecular Genetic Insights on Cheetah (Acinonyx jubatus) Ecology and Conservation in Namibia. J Hered 99:2–13PubMedCrossRefGoogle Scholar
  42. Menotti-Raymond M, O’Brien SJ (1993) Dating the genetic bottleneck of the African cheetah. Proc Nat Acad Sci USA 90:3172–3176PubMedCrossRefGoogle Scholar
  43. Merz A (1994) Rhino: at the brink of extinction. pp 176-179Google Scholar
  44. Moehlman PD, Amato TG, Victor R (1996) Genetic and demographic threats to the black rhinoceros population in the Ngorongoro Crater. Conserv Biol 10:1107–1114CrossRefGoogle Scholar
  45. Morales CJ, Melnick DJ (1994) Molecular systematics of the living rhinoceros. Mol Phylogenet Evol 3:128–134PubMedCrossRefGoogle Scholar
  46. Moritz C (1994) Defining evolutionary significant units for conservation. Trends Ecol Evol 9:373–375PubMedCrossRefGoogle Scholar
  47. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Nat Acad Sci USA 70:3321–3323PubMedCrossRefGoogle Scholar
  48. Neumann AH (1898) Elephant-hunting in east equatorial Africa. London & Encino, CaliforniaGoogle Scholar
  49. Nielsen L, Meehan-Meola D, Kilbourn A, Alcivar-Warren A (2008) Characterization of microsatellite loci in the black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum): their use for cross-species amplification and differentiation between the two species. Conserv Genet 9:239–242CrossRefGoogle Scholar
  50. Nyakaana S, Arctander P, Siegismund H (2002) Population structure of the African savannah elephant inferred from mitochondrial control region sequences and nuclear microsatellite loci. Heredity 89:90–98PubMedCrossRefGoogle Scholar
  51. O’Ryan C, Flamand JRB, Harley EH (1994) Mitochondrial DNA variation in black rhinoceros (Diceros bicornis): conservation management implications. Conserv Biol 8:495–500CrossRefGoogle Scholar
  52. O’Brien SJDEW, Goldman D, Merril CR, Bush M (1983) The Cheetah is depauperate in genetic variation. Science 221:459–462PubMedCrossRefGoogle Scholar
  53. Okello JBA, Masembe C, Rasmussen HB, Wittemyer G, Omondi P, Kahindi O, Muwanika VB, Arctander P, Douglas-Hamilton I, Nyakaana S, Siegismund HR (2008) Population genetic structure of savannah elephants in Kenya: conservation and management implications. J Hered. Accessed 20 July 2008Google Scholar
  54. Okita-Ouma B (2004) Population performance of Black Rhinoceros (Diceros bicornis michaeli) in six Kenyan rhino sanctuaries. University of Kent, CanterburyGoogle Scholar
  55. Okita-Ouma B, Amin B, Kock R (2007) Conservation and management strategy for the black rhino (Diceros bicornis michaeli) and management guidelines for the white rhino (Ceratotherium simum simum) in Kenya (2007–2011). KWS, Nairobi, p 157Google Scholar
  56. Patterson JH (1909) In the grip of the Nyika; further adventures in British East Africa. Macmillan and Co., Ltd, New YorkGoogle Scholar
  57. Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  58. R Development Core Team (2006) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  59. Roca AL, Georgiadis N, O’Brien SJ (2007) Cyto-nuclear genomic dissociation and the African elephant species question. Quat Int 169(170):116–174Google Scholar
  60. Rozas J, Sánchez-Delbarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497Google Scholar
  61. Scott CA (2008) Microsatellite variability in four contemporary rhinoceros species: implications for conservation. Department of Biology, Queen’s University Kingston, Ontario, CanadaGoogle Scholar
  62. Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15:199–203PubMedCrossRefGoogle Scholar
  63. Swart MKJ, Ferguson JWH, du Toit R, Flamand JRB (1994) Substantial genetic variation in southern African black rhinoceros. J Hered 85:261–266Google Scholar
  64. Taberlet P, Griffin S, Goossens B et al (1996) Reliable genotyping of samples with very low DNA quantities using PCR. Nucleic Acids Res 24:3189–3194PubMedCrossRefGoogle Scholar
  65. van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  66. Weir B, Cockerham C (1984) Estimating F-statistic for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  67. Yeh F, Yang R, Boyle T (2000) POPGENE version 1.32. Department of Renewable Resources at the University of Alberta, Canada, AlbertaGoogle Scholar
  68. Zschokke S, Gautschi B, Baur B (2003) Polymorphic microsatellite loci in the endangered Indian rhinoceros, Rhinoceros unicornis. Mol Ecol Notes 3:233–235CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • S. M. Muya
    • 1
    Email author
  • M. W. Bruford
    • 2
  • A. W.-T. Muigai
    • 1
  • Z. B. Osiemo
    • 1
  • E. Mwachiro
    • 1
  • B. Okita-Ouma
    • 3
  • B. Goossens
    • 2
    • 4
  1. 1.Faculty of ScienceJomo Kenyatta University of Agriculture and TechnologyNairobiKenya
  2. 2.Organisms and Environment Division, School of BiosciencesCardiff UniversityCardiffUK
  3. 3.Rhino ProgrammeKenya Wildlife ServiceNairobiKenya
  4. 4.c\o Sabah Wildlife DepartmentDanau Girang Field CentreKota Kinabalu, SabahMalaysia

Personalised recommendations