Conservation Genetics

, Volume 12, Issue 5, pp 1205–1214 | Cite as

Low effective population size and survivorship in a grassland grouse

  • C. L. Pruett
  • J. A. Johnson
  • L. C. Larsson
  • D. H. Wolfe
  • M. A. Patten
Research Article

Abstract

Assessments of census size (Nc) and effective population size (Ne) are necessary for the conservation of species exhibiting population declines. We examined two populations (Oklahoma and New Mexico) of the lesser prairie-chicken (Tympanuchus pallidicinctus), a declining lek-breeding bird, in which one population (Oklahoma) has larger clutch size and more nesting attempts per year but lower survival caused by human changes to the landscape. We estimated demographic and genetic estimates of Ne for each population and found that both populations have low Ne estimates with a risk of inbreeding depression. Although Oklahoma females produce a larger number of offspring, the proportion of females successfully reproducing is not higher than in New Mexico. Higher reproductive effort has likely reached a physiological limit in Oklahoma prairie-chickens but has not led to a higher Ne or even a larger Nc than New Mexico. We propose that future conservation efforts focus on maximizing survivorship and decreasing the variance in reproductive success because these factors are more likely than increasing reproductive output alone to yield population persistence in lek-breeding species.

Keywords

Lek Lesser prairie-chicken Microsatellite loci Mitochondrial DNA Tympanuchus pallidicinctus 

References

  1. Bellinger MR, Johnson JA, Toepfer JE, Dunn PO (2003) Loss of genetic variation in greater prairie chickens following a population bottleneck in Wisconsin, USA. Conserv Biol 17:717–724CrossRefGoogle Scholar
  2. Boulding EG, Hay T (2001) Genetic and demographic parameters determining population persistence after a discrete change in the environment. Heredity 86:313–324PubMedCrossRefGoogle Scholar
  3. Bouzat JL, Cheng H, Lewin HA, Westemeier RL, Brawn JD, Paige KN (1998) Genetic evaluation of a demographic bottleneck in the greater prairie chicken. Conserv Biol 12:836–843CrossRefGoogle Scholar
  4. Bouzat JL, Johnson JA, Toepfer JE, Simpson SA, Esker TL, Westemeier RL (2009) Beyond the beneficial effects of translocations as an effective tool for the genetic restoration of isolated populations. Conserv Genet 10:191–201CrossRefGoogle Scholar
  5. Davis DM, Horton RE, Odell EA, Rodgers RD, Whitlaw HA (2008) Lesser prairie-chicken conservation initiative. Lesser Prairie Chicken Interstate Working Group, Colorado Division of Wildlife, Fort CollinsGoogle Scholar
  6. Dion N, Hobson KA, Larivière S (2000) Interactive effects of vegetation and predators on the success of natural and simulated nests of grassland songbirds. Condor 102:629–634CrossRefGoogle Scholar
  7. Ellegren H (2009) A selection model of molecular evolution incorporating the effective population size. Evolution 63:301–305PubMedCrossRefGoogle Scholar
  8. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  9. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  10. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  11. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  12. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  13. Fu Y-X, Li W-H (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  14. Gapare WJ, Aitken SN, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis (Bong.) Carr) populations: implications for conservation of widespread species. Biol Conserv 123:113–123CrossRefGoogle Scholar
  15. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  16. Gutiérrez RJ, Franklin AB, LaHaye WS (1995) Spotted owl (Strix occidentalis). In: Poole A (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu.ezproxy1.lib.ou.edu/bna/species/179. Accessed 9 August 2010. doi:10.2173/bna.179
  17. Hagen CA, Giesen KM (2005) Lesser prairie-chicken (Tympanuchus pallidicinctus). In: Poole A (ed) The birds of North America, Cornell Lab of Ornithology, Ithaca. http://bna.birds.cornell.edu.ezproxy1.lib.ou.edu/bna/species/179. Accessed 9 August 2010. doi:10.2173/bna.179
  18. Hagen CA, Jamison BE, Geisen KM, Riley TZ (2004) Guidelines for managing lesser prairie-chicken populations and their habitats. Wildl Soc Bull 32:69–82CrossRefGoogle Scholar
  19. Hagen CA, Pitman JC, Sandercock BK, Wolfe DH, Robel RJ, Applegate RD, Oyler-McCance SJ (2010) Regional variation in mtDNA of the lesser prairie-chicken. Condor 112:29–37CrossRefGoogle Scholar
  20. Holt RD, Gomulkiewicz R (2004) Conservation implications of niche conservatism and evolution in heterogeneous environments. In: Ferrière R, Dieckmann U, Couvet C (eds) Evolutionary conservation biology. Cambridge University Press, Cambridge, pp 244–264CrossRefGoogle Scholar
  21. Johnson JA, Bellinger MR, Toepfer JE, Dunn PO (2004) Temporal changes in allele frequencies and low effective population size in greater prairie-chickens. Mol Ecol 13:2617–2630PubMedCrossRefGoogle Scholar
  22. Johnson JA, Dunn PO, Bouzat JL (2007) Effects of recent population bottlenecks on reconstructing the demographic history of prairie-chickens. Mol Ecol 16:2203–2222PubMedCrossRefGoogle Scholar
  23. Kalinowski ST (2010) The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structure. Heredity 106:625–632PubMedCrossRefGoogle Scholar
  24. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  25. Kuhner MK, Yamato J, Felsenstein J (1998) Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149:429–434PubMedGoogle Scholar
  26. Manel S, Berthier P, Luikart G (2002) Detecting wildlife poaching: identifying the origins of individuals with Bayesian assignment tests and multilocus genotypes. Conserv Biol 16:650–659CrossRefGoogle Scholar
  27. Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341CrossRefGoogle Scholar
  28. Nunney L, Elam DR (1994) Estimating the effective population size of conserved populations. Conserv Biol 8:175–184CrossRefGoogle Scholar
  29. Paetkau D, Slade R, Burdens M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  30. Patten MA, Wolfe DH, Shochat E, Sherrod SK (2005a) Habitat fragmentation, rapid evolution and population persistence. Evol Ecol Res 7:235–249Google Scholar
  31. Patten MA, Wolfe DH, Shochat E, Sherrod SK (2005b) Effects of microhabitat and microclimate selection on adult survivorship of the lesser prairie-chicken. J Wildl Manag 69:1270–1278CrossRefGoogle Scholar
  32. Piertney SB, Dallas JF (1997) Isolation and characterization of hypervariable microsatellites in red grouse Lagopus lagopus scoticus. Mol Ecol 6:93–95PubMedCrossRefGoogle Scholar
  33. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  34. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  35. Pruett CL, Patten MA, Wolfe DH (2009a) It’s not easy being green: wind energy and a declining grassland bird. Bioscience 59:257–262CrossRefGoogle Scholar
  36. Pruett CL, Patten MA, Wolfe DH (2009b) Avoidance behavior by prairie grouse: implications for development of wind energy. Conserv Biol 23:1253–1259PubMedCrossRefGoogle Scholar
  37. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201PubMedCrossRefGoogle Scholar
  38. Ricklefs RE (1969) An analysis of nesting mortality in birds. Smithson Contrib Zool 9:1–48CrossRefGoogle Scholar
  39. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  40. Sokal RR, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman Company, New YorkGoogle Scholar
  41. Stiver JR, Apa AD, Remington TE, Gibson RM (2008) Polygyny and female breeding failure reduce effective population size in the lekking Gunnison sage-grouse. Biol Conserv 141:472–481CrossRefGoogle Scholar
  42. Storz JF, Ramakrishnan U, Alberts SC (2002) Genetic effective population size of a wild primate population: influence of current and historical demography. Evolution 56:817–829PubMedGoogle Scholar
  43. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  44. Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301PubMedCrossRefGoogle Scholar
  45. Taylor SE, Oyler-McCance SJ, Quinn TW (2003) Isolation and characterization of microsatellite loci in greater sage-grouse (Centrocercus urophasianus). Mol Ecol Notes 3:262–264CrossRefGoogle Scholar
  46. Traill LW, Brook BW, Frankham RR, Bradshaw CJA (2010) Pragmatic population viability targets in a rapidly changing world. Biol Conserv 143:28–34CrossRefGoogle Scholar
  47. Van den Bussche RA, Hooper SR, Wiedenfeld DA, Wolfe DH, Sherrod SK (2003) Genetic variation within and among fragmented populations for lesser prairie-chickens (Tympanuchus pallidicinctus). Mol Ecol 12:675–683CrossRefGoogle Scholar
  48. Vucetich JA, Waite TA (1998) Number of censuses required for demographic estimation of effective population size. Conserv Biol 12:1023–1030CrossRefGoogle Scholar
  49. Vucetich JA, Waite TA (2004) Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics. Conserv Genet 4:639–645CrossRefGoogle Scholar
  50. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184CrossRefGoogle Scholar
  51. Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756PubMedCrossRefGoogle Scholar
  52. Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276PubMedCrossRefGoogle Scholar
  53. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  54. Westemeier RL, Brawn JD, Simpson SA, Esker TL, Jansen RW, Walk JW, Kershner EL, Bouzat JL, Paige KN (1998) Tracking the long-term decline and recovery of an isolated population. Science 282:1695–1698PubMedCrossRefGoogle Scholar
  55. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458CrossRefGoogle Scholar
  56. Wolfe DH, Patten MA, Shochat E, Pruett CL, Sherrod SK (2007) Causes and patterns of mortality in lesser prairie-chickens Tympanuchus pallidicinctus and implications for management. Wildl Biol 13(Suppl 1):95–104Google Scholar
  57. Wolfe DH, Patten MA, Sherrod SK (2009) Reducing grouse collision mortality by marking fences (Oklahoma). Ecol Restor 27:141–143CrossRefGoogle Scholar
  58. Zera AJ, Harshman JG (2001) The physiology of life history trade-offs in animals. Annu Rev Ecol Syst 32:95–106CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • C. L. Pruett
    • 1
    • 2
  • J. A. Johnson
    • 3
  • L. C. Larsson
    • 1
  • D. H. Wolfe
    • 1
  • M. A. Patten
    • 1
    • 4
  1. 1.Sutton Avian Research CenterUniversity of OklahomaBartlesvilleUSA
  2. 2.Department of Biological SciencesFlorida Institute of TechnologyMelbourneUSA
  3. 3.Department of Biological Sciences and Institute of Applied SciencesUniversity of North TexasDentonUSA
  4. 4.Oklahoma Biological Survey and Department of ZoologyUniversity of OklahomaNormanUSA

Personalised recommendations