Conservation Genetics

, Volume 12, Issue 4, pp 991–1001 | Cite as

Fine-scale genetic structure of an endangered population of the Mormon metalmark butterfly (Apodemia mormo) revealed using AFLPs

  • Lindsay A. Crawford
  • Sylvie Desjardins
  • Nusha Keyghobadi
Research Article

Abstract

We investigated the genetic structure and diversity of an endangered Canadian population of the Mormon metalmark butterfly (Apodemia mormo) using, for the first time, amplified fragment length polymorphism (AFLP) markers generated from non-lethal samples of butterfly wing tissue. Based on 326 loci, our analyses show a high degree of spatial genetic structure within the population, indicating limited gene flow, despite a small geographic range (<20 km). We found that geographic distance, particularly measured along valley bottoms, restricts gene flow within this population. However, other potential barriers to movement and genetic exchange were also identified, in particular urban development. Overall, the population exhibited low levels of genetic diversity. Future management should focus on increasing gene flow between the most isolated sub-populations, and through urban areas, by preserving and restoring as many habitat patches as possible.

Keywords

AFLP Conservation genetics Genetic diversity Population structure Locus selection criteria Lepidoptera 

Supplementary material

10592_2011_202_MOESM1_ESM.docx (25 kb)
Supplementary material 1 (DOCX 26 kb)

References

  1. Arnold RA, Powell JA (1983) Apodemia mormo langei. In: Ecological studies of six endangered butterflies (Lepidoptera, Lycaenidae): island biogeography, patch dynamics and design of habitat preserves. University of California Press, California, pp 99–126Google Scholar
  2. Bensch S, Akesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914PubMedCrossRefGoogle Scholar
  3. Bonin A, Ehrich D, Manel S (2007) Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Mol Ecol 16:3737–3758PubMedCrossRefGoogle Scholar
  4. Brattström O, Åkesson S, Bensch S (2010) AFLP reveals cryptic population structure in migratory European red admirals (Vanessa atalanta). Ecol Entomol 35:248–252CrossRefGoogle Scholar
  5. Cannings S, Cannings R (1995) Rare invertebrates of the south Okanagan. Province of British Columbia, Ministry of Environment, Lands and Parks. http://www.env.gov.bc.ca. Accessed 30 Aug 2010
  6. Collier N, Gardner M, Adams M, McMahon CR, Benkendorff K, Mackay DA (2010) Contemporary habitat loss reduces genetic diversity in an ecologically specialized butterfly. J Biogeogr 37:1277–1287CrossRefGoogle Scholar
  7. Committee on the Status of Endangered Wildlife in Canada (COSEWIC) (2003) COSEWIC assessment and updated status report on the Mormon Metalmark Apodemia mormo in Canada. Ottawa, CanadaGoogle Scholar
  8. Dasmahapatra KK, Lacy RC, Amos W (2008) Estimating levels of inbreeding using AFLP markers. Heredity 10:286–295CrossRefGoogle Scholar
  9. Delaney KS, Riley SPD, Fisher RN (2010) A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates. PLoS ONE 5. doi:10.1371/journal.pone.0012767
  10. Dover JW (1991) The conservation of insects on arable farmland. In: Collins NM, Thomas JA (eds) The conservation of insects and their habitats. Academic Press, London, pp 294–315Google Scholar
  11. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188PubMedCrossRefGoogle Scholar
  12. Ehrich D (2006) AFLPDAT: a collection of R functions for convenient handling of AFLP data. Mol Ecol Notes 6:603–604CrossRefGoogle Scholar
  13. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  14. Franklin MT, Ritland CE, Myers JH (2010) Spatial and temporal changes in genetic structure of greenhouse and field populations of cabbage looper, Trichoplusia ni. Mol Ecol 19:1122–1133PubMedCrossRefGoogle Scholar
  15. Gompert Z, Nice CC, Fordyce JA, Forister ML, Shapiro AM (2006) Identifying units for conservation using molecular systematics: the cautionary tale of the Karner blue butterfly. Mol Ecol 15:1759–1768PubMedCrossRefGoogle Scholar
  16. Guppy CA, Shepard JH (2001) Butterflies of British Columbia: Including Western Alberta, Southern Yukon, the Alaska Panhandle, Washington, Northern Oregon, Northern Idaho, and Northwestern Montana. University of British Columbia Press, VancouverGoogle Scholar
  17. Guppy CS, Shepard JH, Kondla NG (1994) Butterflies and skippers of conservation concern in British Columbia. Can Field Nat 108:31–40Google Scholar
  18. Haig SM, Wagner RS, Forsman ED, Mullins TD (2001) Geographic variation and genetic structure in spotted owls. Conserv Genet 2:25–40CrossRefGoogle Scholar
  19. Hamm CA, Aggarwal D, Landis DA (2010) Evaluating the impact of non-lethal DNA sampling on two butterflies, Vanessa cardui and Satyrodes eurydice. J Insect Conserv 14:11–18CrossRefGoogle Scholar
  20. Herrmann D, Poncet BN, Manel S, Rioux D, Gielly L, Taberlet P, Gugerli F (2010) Selection criteria for scoring amplified fragment length polymorphism (AFLPs) positively affect the reliability of population genetic parameter estimates. Genome 53:302–310PubMedCrossRefGoogle Scholar
  21. Keyghobadi N, Unger KP, Weintraub JD, Fonseca DM (2006) Remnant populations of the regal fritillary (Speyeria idalia) in Pennsylvania: local genetic structure in a high gene flow species. Conserv Genet 7:309–313CrossRefGoogle Scholar
  22. Keyghobadi N, Crawford LA, Maxwell SA (2009) Successful analysis of AFLPs from non-lethally sampled wing tissues in butterflies. Conserv Genet 10:2021–2024CrossRefGoogle Scholar
  23. Koscinski D, Crawford LA, Keller HA, Keyghobadi N (in press) Effects of different methods of non-lethal tissue sampling on butterflies. Ecol Entomol. doi:10.1111/j.1365-2311.2011.01272.x
  24. Kronforst MR, Salazar C, Linares M, Gilbert LE (2007) No genomic mosaicism in a putative hybrid butterfly species. Proc R Soc Lond B 274:1255–1264CrossRefGoogle Scholar
  25. Layberry RA, Hall PW, Lafontaine JD (1998) The butterflies of Canada. University of Toronto Press, TorontoGoogle Scholar
  26. Krumm JT, Hunt TE, Skoda SR, Hein GL, Lee, DJ, Clark PL, Foster JE (2008) Genetic variability of the European corn borer, Ostrinia nubilalis, suggests gene flow between populations in the Midwestern United States. J Insect Sci 8:72. http://www.insectscience.org/8.72. Accessed 30 Aug 2010
  27. Leidner AK, Haddad NM (2010) Natural, not urban, barriers define population structure for a coastal endemic butterfly. Conserv Genet 11:2311–2320CrossRefGoogle Scholar
  28. Lushai G, Fjelsted W, Marcovitch O, Aagaard K, Sherratt TN, Allen JA, Maclean N (2000) Application of molecular techniques to non-lethal tissue samples of endangered butterfly populations (Parnassius apollo L.) in Norway for conservation management. Biol Conserv 94:43–50CrossRefGoogle Scholar
  29. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99PubMedCrossRefGoogle Scholar
  30. Madsen T, Shine R, Olsson M, Wittzell H (1999) Restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  31. Maes D, Van Dyck H (2001) Butterfly diversity loss in Flanders (north Belgium): Europe’s worst case scenario? Biol Conserv 99:263–276CrossRefGoogle Scholar
  32. Manni F, Guérard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by “Monmonier’s algorithm”. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  33. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  34. Meglécz E, Anderson SJ, Bourget D, Butcher R, Caldas A, Cassel-Lundhagen A, d’Acier AC, Dawson DA, Faure N, Fauvelot C, Franck P, Harper G, Keyghobadi N, Kluetsch C, Muthulakshmi M, Nagaraju J, Patt A, Péténian F, Silvain JF, Wilcock HR (2007) Microsatellite flanking region similarities among different loci within insect species. Insect Mol Biol 16:175–185PubMedCrossRefGoogle Scholar
  35. Meudt HM, Clarke AC (2007) Almost forgotten or latest practice? AFLP applications, analyses and advances. Trends Plant Sci 12:106–117PubMedCrossRefGoogle Scholar
  36. Millot E, Weimerskirch H, Duchesne P, Bernatchez L (2007) Surviving with low genetic diversity: the case of albatrosses. Proc R Soc Lond B 274:779–787CrossRefGoogle Scholar
  37. Monmonier M (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 3:245–261Google Scholar
  38. New TR (1995) An introduction to invertebrate conservation biology. Oxford University Press, New YorkGoogle Scholar
  39. Noel S, Ouellet M, Galois P, Lapointe F (2007) Impact of urban fragmentation on the genetic structure of eastern red-backed salamander. Conserv Genet 8:599–606CrossRefGoogle Scholar
  40. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  41. Proshek B (2010) Taxonomy and conservation of Apodemia mormo (Lepidoptera: Riodinidae) in North America. M.Sc. thesis, University of AlbertaGoogle Scholar
  42. Ralls K, Ballou JD, Rideout BA, Frankham R (2000) Genetic management of chondrodystrophy in the California condor. Anim Conserv 3:145–153CrossRefGoogle Scholar
  43. Ries L, Debinski DM (2001) Butterfly responses to habitat edges in the highly fragmented prairies of central Iowa. J Anim Ecol 70:840–852CrossRefGoogle Scholar
  44. Schroeder H, Degen B (2008) Spatial genetic structure in populations of the green oak leaf roller, Tortrix viridana L. (Lepidoptera, Tortricidae). Eur J For Res 127:447–453Google Scholar
  45. Schtickzelle N, Baguette M (2003) Behavioural responses to habitat patch boundaries restrict dispersal and generate emigration-patch area relationships in fragmented landscapes. J Anim Ecol 72:533–545CrossRefGoogle Scholar
  46. Sigaard P, Pertoldi C, Madsen AB, Søgaard B, Loeschcke V (2008) Patterns of genetic variation in isolated populations of the endangered butterfly Euphydryas aurinia. Biol J Linn Soc 95:677–687CrossRefGoogle Scholar
  47. Takami Y, Koshio C, Ishii MU, Fujii H, Hidaka T, Shimizu IM (2004) Genetic diversity and structure of urban populations of Pieris butterflies assessed using amplified fragment length polymorphism. Mol Ecol 13:245–258PubMedCrossRefGoogle Scholar
  48. Timm AE, Geertsema H, Warnich L (2006) Gene flow among Cydia pomonella (Lepidoptera: Tortricidae) geographic and host populations in South Africa. J Econ Entomol 99:341–348PubMedCrossRefGoogle Scholar
  49. Timm AE, Geertsema H, Warnich L (2008) Population genetic structure of Grapholita molesta (Lepidoptera: Tortricidae) in South Africa. Ann Entomol Soc Am 101:197–203CrossRefGoogle Scholar
  50. Vandergast AG, Lewallen EA, Deas J, Bohonak AJ, Weissman DB, Fisher RN (2009) Loss of genetic connectivity and diversity in urban microreserves in a southern California endemic Jerusalem cricket (Orthoptera: Stenopelmatidae: Stenopelmatus n. sp. “santa monica”). J Insect Conserv 13:329–345CrossRefGoogle Scholar
  51. Vandewoestijne S, Baguette M (2004) Genetic population structure of the vulnerable bog fritillary butterfly. Hereditas 141:199–206PubMedCrossRefGoogle Scholar
  52. Vekemans X, Beauwens T, Lemaire M, Rodán-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151PubMedCrossRefGoogle Scholar
  53. Vila M, Auger-Rozenberg MA, Goussard F, Lopez-Vaamonde C (2009) Effect of non-lethal sampling on life-history traits of the protected moth Graellsia isabelae (Lepidoptera: Saturniidae). Ecol Entomol 34:356–362CrossRefGoogle Scholar
  54. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414PubMedCrossRefGoogle Scholar
  55. Whitlock R, Hipperson H, Mannarelli M, Butlin RK, Burke T (2008) An objective, rapid, and reproducible method for scoring AFLP peak-height data that minimizes genotyping error. Mol Ecol Resour 8:725–735PubMedCrossRefGoogle Scholar
  56. Wilson PJ, Grewal S, Lawford ID, Heal JNM, Granacki AG, Pennick D, Theberges MT, Voigt DR, Waddell W, Chambers RE, Paquet PC, Goulet G, Cluff D, White BN (2000) DNA profiles of the eastern Canadian wolf and the red wolf provide evidence for a common evolutionary history independent of the gray wolf. Can J Zool 78:2156–2166CrossRefGoogle Scholar
  57. Wood BC, Pullin AS (2002) Persistence of species in a fragmented urban landscape: the importance of dispersal ability and habitat availability for grassland butterflies. Biodivers Conserv 11:1451–1468CrossRefGoogle Scholar
  58. Zhang DX (2004) Lepidopteran microsatellite DNA: redundant but promising. Trends Ecol Evol 19:507–509PubMedCrossRefGoogle Scholar
  59. Zhivotovsky L (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lindsay A. Crawford
    • 1
  • Sylvie Desjardins
    • 2
  • Nusha Keyghobadi
    • 1
  1. 1.Department of BiologyUniversity of Western OntarioLondonCanada
  2. 2.I.K. Barber School of Arts and SciencesUniversity of British Columbia OkanaganKelownaCanada

Personalised recommendations