Conservation Genetics

, Volume 12, Issue 4, pp 959–970 | Cite as

Patterns of chloroplast DNA variation in Cycas debaoensis (Cycadaceae): conservation implications

Research Article

Abstract

Climate changes during glacial periods have had significant effects on the current distribution of plant species. Palaeontologial data suggest that modern cycads originated in southwest China. Cycas debaoensis (Cycadaceae) is an endangered species restricted to a small area of southwest China. This species has been classified into two types: sand and karst, according to the soil matrix they grow on. To determine the locations of its glacial refugia and its genetic structure, we examined chloroplast sequence variation of the atpB-rbcL and psbA-trnH intergenic spacers. Four chloroplast DNA haplotypes were obtained from 120 individuals collected from 11 populations covering the entire extant distribution range of the species. Significant population subdivision was detected (GST = 0.684 and FST = 0.74160), suggesting low levels of gene flow between regions and populations. There was marked haplotype differentiation between populations in the sand and karst regions, with only one haplotype being present in both. The molecular phylogenetic data, together with the geographic distribution of the haplotypes, suggest that C. debaoensis experienced range contraction during glacial periods, and that the current populations are still confined to the areas of the original refugia. These results implied that isolated refugia might have maintained in both sand and karst regions during the last glacial maximum and even earlier glaciations. The low within-population diversity of C. debaoensis suggested that there were strong bottleneck events or founder effects within each separate region during the Quaternary climatic oscillations. These findings are important for the conservation of this endangered species.

Keywords

Chloroplast DNA atpB-rbcL and psbA-trnCycas debaoensis Glacial refugia Range contraction Population structure Conservation 

Supplementary material

10592_2011_198_MOESM1_ESM.doc (45 kb)
Supplementary material 1 (DOC 45 kb)

References

  1. Amos W, Harwood J (1998) Factors affecting levels of genetic diversity in natural populations. Philos Trans R Soc Lond B Biol Sci 353:177–186PubMedCrossRefGoogle Scholar
  2. Artyukova EV, Kozyrenko MM, Gorovoy PG, Zhuravlev YN (2009) Plastid DNA variation in highly fragmented populations of Microbiota decussata Kom. (Cupressaceae), an endemic to Sikhote Alin mountains. Genetica 137:201–212PubMedCrossRefGoogle Scholar
  3. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  4. Barrett SCH, Kohn JR (1991) Genetic and evolutionary consequences of small population size in plants: implications for conservation. Oxford University Press, New YorkGoogle Scholar
  5. Burns EL, Eldridge MDB, Crayn DM, Houlden BA (2007) Low phylogeographic structure in a wide spread endangered Australian frog Litoria aurea (Anura: Hylidae). Conserv Genet 8:17–32CrossRefGoogle Scholar
  6. Cabrera-Toledo D, González-Astorga J, Vovides AP (2008) Heterozygote excess in ancient populations of the critically endangered Dioon caputoi (Zamiaceae, Cycadales) from central Mexico. Bot J Linn Soc 158:436–447CrossRefGoogle Scholar
  7. Cabrera-Toledo D, González-Astorga J, Nicolalde-Morejón F, Vergara-Silva F, Vovides AP (2010) Allozyme diversity levels in two congeneric Dioon spp. (Zamiaceae, Cycadales) with contrasting rarities. Plant Syst Evol 290:115–125Google Scholar
  8. Cafasso D, Cozzolino S, Caputo P, Luca PD (2001) Maternal inheritance of plastids in Encephalartos Lehm (Zamiaceae, Cycadales). Genome 44:239–241PubMedGoogle Scholar
  9. Cai YL, Wang XH, Song YC (1999) An ecoanatomical study on leaves of Cyclobalanopsis glauca populations in the eastern subtropical zone, China. Acta Ecologica Sinica 19:844–849Google Scholar
  10. Chiang YC, Hung KH, Moore SJ, Ge XJ, Hung S, Hsu TW, Schaal BA, Chiang TY (2009) Paraphyly of organelle DNAs in Cycas Sect. Asiorientales due to ancient ancestral polymorphisms. BMC Evol Biol 9:161PubMedCrossRefGoogle Scholar
  11. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochem Bull 19:11–15Google Scholar
  13. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214PubMedCrossRefGoogle Scholar
  14. Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242CrossRefGoogle Scholar
  15. Ellstrand NC, Ornduff R, Clegg JM (1990) Genetic structure of the Australian cycad, Macrozamia communis (Zamiaceae). Am J Bot 77:677–681CrossRefGoogle Scholar
  16. Erdei B, Akgün F, Barone Lumaga MR (2010) Pseudodioon akyoli gen. et sp. nov., an extinct member of Cycadales from the Turkish Miocene. Plant Syst Evol 285:33–49CrossRefGoogle Scholar
  17. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  18. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  19. Franco AM, Hill JK, Kitschke C, Collingham YC, Roy DB, Fox R, Huntley B, Thomas CD (2006) Impacts of climate warming and habitat loss on extinctions at species’ low-latitude range boundaries. Global Change Biol 12:1545–1553CrossRefGoogle Scholar
  20. Frankel O, Soulé M (1981) Conservation and evolution. Cambridge University Press, CambridgeGoogle Scholar
  21. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  22. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  23. Fu LG, Jin JM (1992) China plant red data book: rare and endangered plants, I. Science Press, BeijingGoogle Scholar
  24. Gao ZF, Thomas BA (1989) A review of fossil cycad megasporophylls, with new evidence of Crossozamia pomel and its associated leaves from the lower Permian of Taiyuan, China. Rev Palaeobot Palynol 60:205–223CrossRefGoogle Scholar
  25. González-Astorga J, Vovides AP, Ferrer MM, Iglesias C (2003) Population genetics of Dioon edule Lindl. (Zamiaceae, Cycadales): biogeographical and evolutionary implications. Biol J Linn Soc 80:457–467CrossRefGoogle Scholar
  26. González-Astorga J, Vovides A, Cruz-Angon A, Octavio-Aguilar P, Iglesias C (2005) Allozyme variation in the three extant populations of the narrowly endemic Cycad Dioon angustifolium Miq. (Zamiaceae) from North-eastern Mexico. Ann Bot 95:999PubMedCrossRefGoogle Scholar
  27. GonzáLez-Astorga J, Vergara-Silva F, Vovides AP, Nicolalde-Morejón F, Cabrera-Toledo DAN, Pérez-Farrera MA (2008a) Diversity and genetic structure of three species of Dioon Lindl. (Zamiaceae, Cycadales) from the Pacific seaboard of Mexico. Biol J Linn Soc 94:765–776CrossRefGoogle Scholar
  28. González-Astorga J, Vovides AP, Cabrera-Toledo D, Nicolalde-Morejón F (2008b) Diversity and genetic structure of the endangered cycad Dioon sonorense (Zamiaceae) from Sonora, Mexico: evolutionary and conservation implications. Biochem Syst Ecol 36:891–899CrossRefGoogle Scholar
  29. Graur D, Li WH (2000) Fundamentals of molecular evolution. Sinauer Associates, SunderlandGoogle Scholar
  30. Guan ZT, Zhou L (1996) Cycads of China. Sichuan Science and Technology Press, ChengduGoogle Scholar
  31. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704PubMedCrossRefGoogle Scholar
  32. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95–124CrossRefGoogle Scholar
  33. Hendricks JG (1987) The Gondwanan Cycas. Encephalartos 10:24–25Google Scholar
  34. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913PubMedCrossRefGoogle Scholar
  35. Hewitt GM (1996) Some genetic consequences of ice ages, and their role, in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  36. Hewitt GM (2004) Genetic consequences of climatic oscillations in the Quaternary. Philos Trans R Soc Lond Ser B Biol Sci 359:183–195CrossRefGoogle Scholar
  37. Hill KD, Stevenson DW, Osborne R (2004) The world list of cycads. Bot Rev 70:274–298CrossRefGoogle Scholar
  38. Hu YF, Chen ZD, Chen CJ, Geng BY (1999) Discoveries of some fossils of cycad reproductive organs from China and their significance to the origin of cycads. In: Biology and conservation of cycads-proceedings of the fourth international conference on cycad biology. International Academic Publishers, Beijing, pp. 43–48Google Scholar
  39. Ikeda H, Senni K, Fujii N, Setoguchi H (2008) Consistent geographic structure among multiple nuclear sequences and cpDNA polymorphisms of Cardamine nipponica Franch. et Savat. (Brassicaceae). Mol Ecol 17:3178–3188PubMedCrossRefGoogle Scholar
  40. Jian SJ, Zhong Y, Liu N, Gao ZZ, Wei Q, Xie ZH, Ren H (2006) Genetic variation in the endangered endemic species Cycas fairylakea (Cycadaceae) in China and implications for conservation. Biodivers Conserv 15:1681–1694CrossRefGoogle Scholar
  41. Keppel G, Lee SW, Hodgskiss PD (2002) Evidence for long isolation among populations of a Pacific cycad: genetic diversity and differentiation in Cycas seemannii A. Br. (Cycadaceae). J Hered 93:133–139PubMedCrossRefGoogle Scholar
  42. Kyoda S, Setoguchi H (2010) Phylogeography of Cycas revoluta Thunb. (Cycadaceae) on the Ryukyu islands: very low genetic diversity and geographical structure. Plant Syst Evol 288:177–189CrossRefGoogle Scholar
  43. Li PJ (1982) Early Cretaceous plants from the Tuoni formation of eastern Xizang. People’s Press of Sichuan, ChengduGoogle Scholar
  44. Li P, Cao Z, Wu S (1976) Mesozoic plants of Yunnan, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences edn. Science Press, BeijingGoogle Scholar
  45. Liao PC, Havanond S, Huang S (2007) Phylogeography of Ceriops tagal (Rhizophoraceae) in Southeast Asia: the land barrier of the Malay Peninsula has caused population differentiation between the Indian Ocean and South China Sea. Conserv Genet 8:89–98CrossRefGoogle Scholar
  46. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci USA 99:14590–14594PubMedCrossRefGoogle Scholar
  47. Lin TP, Sun YC, Lo HC, Cheng YP (2000) Low genetic diversity of Cycas taitungensis (Cycadaceae), an endemic species in Taiwan, revealed by allozyme analysis. Taiwan J For Sci 14:35–42Google Scholar
  48. Lynch M (1996) A quantitative-genetic perspective on conservation issues. Chapman and Hall, New YorkGoogle Scholar
  49. Ma XY, Jian SG, Wu M, Liu N (2003) The population characters and conservation of Cycas debaoensis Y.C. Zhong et. C. J. Chen. Guihaia 23:123–126Google Scholar
  50. Maxted N, Hawkes JG, Ford-Lloyd BV (1997) Selection of target taxa. Chapman & Hall, LondonGoogle Scholar
  51. Moritz C (1994) Defining “Evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–374PubMedCrossRefGoogle Scholar
  52. Naciri Y, Gaudeul M (2007) Phylogeography of the endangered Eryngium alpinum L. (Apiaceae) in the European Alps. Mol Ecol 16:2721–2733PubMedCrossRefGoogle Scholar
  53. Norstog KJ, Nicholls TJ (1997) The biology of the cycads. Cornell University Press, IthacaGoogle Scholar
  54. Opgenoorth L, Vendramin GG, Mao K, Miehe G, Miehe S, Liepelt S, Liu J, Ziegenhagen B (2010) Tree endurance on the Tibetan Plateau marks the world’s highest known tree line of the last glacial maximum. New Phytol 185:332–342PubMedCrossRefGoogle Scholar
  55. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565PubMedCrossRefGoogle Scholar
  56. Petit RJ, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701Google Scholar
  57. Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245PubMedGoogle Scholar
  58. Posada D, Crandall KA (1998) MODEL TEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  59. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147PubMedCrossRefGoogle Scholar
  60. Rambaut A, Drummond A (2004) Tracer: MCMC trace analysis tool. University of Oxford, OxfordGoogle Scholar
  61. Reboud X, Zeyl C (1994) Organelle inheritance in plants. Heredity 72:132–140CrossRefGoogle Scholar
  62. Rendell S, Ennos RA (2003) Chloroplast DNA diversity of the dioecious European tree Ilex aquifolium L. (English holly). Mol Ecol 12:2681–2688PubMedCrossRefGoogle Scholar
  63. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60PubMedCrossRefGoogle Scholar
  64. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497PubMedCrossRefGoogle Scholar
  65. Schaal BA, Da-hayworth KMO, Rauscher JT, Smith WA (1998) Phylogeographic studies in plants: problems and prospects. Mol Ecol 7:465–474CrossRefGoogle Scholar
  66. Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF (1998) Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol 7:453–464PubMedCrossRefGoogle Scholar
  67. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–589PubMedGoogle Scholar
  68. Templeton AR, Sing CF (1993) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics 134:659–669PubMedGoogle Scholar
  69. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882PubMedCrossRefGoogle Scholar
  70. Van Valen L (1965) Morphological variation and width of ecological niche. Am Nat 99:377–390CrossRefGoogle Scholar
  71. Walter R, Epperson BK (2005) Geographic pattern of genetic diversity in Pinus resinosa: contact zone between descendants of glacial refugia. Am J Bot 92:92–100PubMedCrossRefGoogle Scholar
  72. Walters TW, Decker-Walters DS (1991) Patterns of allozyme diversity in the West Indies cycad Zamia pumila (Zamiaceae). Am J Bot 78:436–445CrossRefGoogle Scholar
  73. Wang CH (2007) Population biosystematic and conservation biology of Cycas debaoensis. Guangxi Normal University, GuilinGoogle Scholar
  74. Wang X, Li N, Wang YD, Zheng SL (2009) The discovery of whole-plant fossil cycad from the upper Triassic in western Liaoning and its significance. Chin Sci Bull 54:3116–3119CrossRefGoogle Scholar
  75. Wang H, Qiong L, Sun K, Lu F, Wang YG, Song ZP, Wu QH, Chen JK, Zhang WJ (2010) Phylogeographic structure of Hippophae tibetana (Elaeagnaceae) highlights the highest microrefugia and the rapid uplift of the Qinghai-Tibetan Plateau. Mol Ecol 19:2964–2979PubMedCrossRefGoogle Scholar
  76. Wu GY (1990) Main petrochemistry features of yakou gneiss. Acta Petrol Sin 6:82–91Google Scholar
  77. Xiao LQ, Ge XJ, Gong X, Hao G, Zheng SX (2004) ISSR variation in the endemic and endangered plant Cycas guizhouensis (Cycadaceae). Ann Bot 94:133–138PubMedCrossRefGoogle Scholar
  78. Xie JG, Jian SG, Liu N (2005) Genetic variation in the endemic plant Cycas debaoensis on the basis of ISSR analysis. Aust J Bot 53:141–146CrossRefGoogle Scholar
  79. Yang SL, Meerow AW (1996) The Cycas pectinata (Cycadaceae) complex: genetic structure and gene flow. Int J Plant Sci 157:468–483CrossRefGoogle Scholar
  80. Zhai MG, Yang RY (1986) Early Precambrian gneiss basement in the Panxi area, southwest China. Acta Petrol Sin 2:22–37Google Scholar
  81. Zhang JW, Yao JX, Chen JR, Li CS (2010) A new species of Leptocycas (Zamiaceae) from the upper Triassic sediments of Liaoning province, China. J Syst Evol 48:286–301CrossRefGoogle Scholar
  82. Zhong YC, Chen CJ (1997) Cycas debaoensis Y.C. Zhong et C.J. Chen—a new cycad from China. Acta Phytotaxon Sin 35:571Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Qing-Qing Zhan
    • 1
    • 2
  • Jin-Feng Wang
    • 1
    • 2
  • Xun Gong
    • 1
  • Hua Peng
    • 1
  1. 1.Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyChinese Academy of SciencesKunmingPeople’s Republic of China
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations