Conservation Genetics

, Volume 12, Issue 4, pp 921–931 | Cite as

High connectivity among argali sheep from Afghanistan and adjacent countries: Inferences from neutral and candidate gene microsatellites

  • G. LuikartEmail author
  • S. J. Amish
  • J. Winnie
  • A. Beja-Pereira
  • R. Godinho
  • F. W. Allendorf
  • R. B. Harris
Research Article


We quantified population connectivity and genetic variation in the Marco Polo subspecies of argali mountain sheep (Ovis ammon polii) by genotyping 9 neutral and 8 candidate gene microsatellite loci in 172 individuals noninvasively sampled across five study areas in Afghanistan, China, and Tajikistan. Heterozygosity and allelic richness were generally high (mean H = 0.67, mean A = 6.1), but were significantly lower in the China study area (H = 0.61, P < 0.001; A = 4.9, P < 0.01). One marker in an immune system gene (TCRG4) showed an excess of rare alleles compared to neutral expectations. Another immune system gene (GLYCAM-1) showed excessive differentiation (high F ST) between study areas. Estimates of genetic differentiation were similar (F ST = 0.035 vs. 0.033) with and without the two loci deviating from neutrality, suggesting that selection is not a primary driver of overall molecular variation, and that candidate gene loci can be used for connectivity monitoring, as long as selection tests are conducted to avoid biased gene flow estimates. Adequate protection of argali and maintenance of inter-population connectivity will require monitoring and international cooperation because argali exhibit high gene flow across international borders.


Bottlenecks Habitat fragmentation Gene flow Ovis ammon Pamir Mountains Natural selection Adaptation Infectious disease Noninvasive genetic monitoring Mountain ungulate 



Our study was part of the Afghanistan Biodiversity Conservation Program of the Wildlife Conservation Society (WCS), supported by the United States Agency for International Development (USAID). For field assistance we thank B. Habib, Z. Moheb, Sabir, and A. Khairzad. We also thank S. Kondratov, K.J. Zhang, S. Ostrowski, D. Bedunah, S. Nikzad, Z. Ejlasi, I. Farahmand, Q. Sahar, K. Sediqi, K. Sidiqi, G. Sediq, A. Ahamad, R. King, and L. Yook. We thank A. Dehgan, P. Zahler, P. Smallwood, P. Bowles, and A. Simms for advice and administrative assistance. AB-P was supported by SFRH/BPD/17822/2004 RG by SFRH/BPD/36021/2007, and this work was supported by POCI/CVT/567558/2004 all from Fundacao para a Ciencia e Tecnologia (FCT), Portugal. G.L. and F.W.A. were supported in part by a grant from U.S. National Science Foundation (Grant DEB 074218). G.L. also was supported by grants from NSF (DEB 1067129), the Walton Family foundation, CIBIO, the University of Porto, Portugal, and a research grant PTDC/BIA-BDE/65625/2006 from the Portuguese Science Foundation.


  1. Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation. Nature Rev Genet 11:697–709PubMedCrossRefGoogle Scholar
  2. Antão TA, Lopes RJ, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on an Fst-outlier method. BMC Bioinformatics 9:323PubMedCrossRefGoogle Scholar
  3. Ayres KL, Overall ADJ (2004) API-CALC 1.0: a computer program for calculating the average probability of identity allowing for substructure, inbreeding and the presence of close relatives. Mol Ecol Notes 4:315–318CrossRefGoogle Scholar
  4. Beaumont MA, Balding DJ (2004) Identifying adaptive genetic divergence among populations from genome scans. Mol Ecol 13:969–980PubMedCrossRefGoogle Scholar
  5. Beaumont MA, Nichols RA (1996) Evaluating loci for use in the genetic analysis of population structure. Proc R Soc Lond B 263:1619–1626CrossRefGoogle Scholar
  6. Beja-Pereira A, Oliviera R, Alves PC, Schwartz M, Luikart G (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9:1279–1301PubMedCrossRefGoogle Scholar
  7. Black WC, Baer CF, Antolin MF, DuTeau NM (2001) Population genomics: genome-wide sampling of insect populations. Annu Rev Entomol 46:441–469PubMedCrossRefGoogle Scholar
  8. Cornuet J-M, Luikart G (1996) Description and evaluation of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  9. Cornuet J-M, Piry S, Luikart G, Estoup A, Solignac M (1999) New methods employing multilocus genotypes for selecting or excluding populations as origins of individuals. Genetics 153:1989–2000PubMedGoogle Scholar
  10. Crawford AM et al (2006) Discovery of quantitative trait loci for resistance to parasitic nematode infection in sheep: I. Analysis of outcross pedigrees. BMC Genom 7:178CrossRefGoogle Scholar
  11. Epps CW, Palsbøll PJ, Wehausen JD, Roderick GK, Ramey RR II, McCullough DR (2005) Highways block gene flow and cause a rapid decline in genetic diversity of desert bighorn sheep. Ecol Lett 8:1029–1038CrossRefGoogle Scholar
  12. Ezenwa VO, Etienne RS, Luikart G, Beja-Pereira A, Jolles AE (2010) Hidden consequences of living in a wormy world: nematode-induced immune-suppression facilitates tuberculosis invasion in African buffalo. Am Naturalist 176:613–624CrossRefGoogle Scholar
  13. Faubet P, Waples RW, Gaggiotti OE (2007) Evaluating the performance of a multilocus Bayesian method for the estimation of migration rates. Mol Ecol 16:1149–1166PubMedCrossRefGoogle Scholar
  14. Fedosenko AK, Blank DA (2005) Ovis ammon. Mammalian Species 773:1–15CrossRefGoogle Scholar
  15. Gebremedhin B et al (2009) Combining genetic and ecological data to assess the conservation status of the endangered Ethiopian walia ibex. Anim Conserv 12:89–100CrossRefGoogle Scholar
  16. Gong MH, Dai ZG, Zeng ZH, Zhang Q, Song YL (2007) A preliminary survey of population size and habitats of Marco Polo sheep (Ovis ammon polii) in Taxkorgan Nature Reserve, Xinjiang, China. Acta Theriologica Sinica 27:317–324 (In Chinese with English abstract)Google Scholar
  17. Gutierrez-Espeleta GA, Kalinowski ST, Boyce WM, Hedrick PW (2000) Genetic variation and population structure in desert bighorn sheep: implications for conservation. Conserv Genet 1:3–15CrossRefGoogle Scholar
  18. Harris RB, Winnie J Jr, Amish SJ, Beja-Pereira A, Godinho R, Costa V, Luikart G (2010) Population estimation of argali (Ovis ammon) in the Afghan Pamir using capture-recapture modeling from fecal DNA. J Wildlife Manag 74:668–677CrossRefGoogle Scholar
  19. Hogg JT, Forbes SH, Steele BM, Luikart G (2006) Genetic rescue of an insular population of large mammals. Proc Royal Soc 273:1491–1499CrossRefGoogle Scholar
  20. Hou Z, Bailey JP, Vomachka AJ, Matsuda M, Lockefeer JA, Horseman ND (2000) Glycosylation-dependent cell adhesion molecule 1 (GLYCAM 1) is induced by prolactin and suppressed by progesterone in mammary epithelium. Endochronology 141:4278–4283CrossRefGoogle Scholar
  21. IUCN (2009) IUCN Red List of Threatened Species; section by Harris RB and Reading R. IUCN Species Survival Commission, Gland Switzerland. Version 2009. <>
  22. Kalinowski S (2005) HP-RARE 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  23. Kohn MH, Murphy WJ, Ostrander EA, Wayne RK (2006) Genomics and Conservation Genetics. Trends Ecol Evol 21:629–637PubMedCrossRefGoogle Scholar
  24. Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for detecting recent historical population bottlenecks. Conserv Biol 12:228–237CrossRefGoogle Scholar
  25. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nature Rev Genet 4:981–994PubMedCrossRefGoogle Scholar
  26. Luikart G, Zundel S, Rioux D, Miquel C, Keating KA, Hogg JT, Steele B, Foresman K, Taberlet P (2008a) Low genotyping error rates for microsatellite multiplexes and noninvasive fecal DNA samples from bighorn sheep. J Wildlife Manag 72:299–304CrossRefGoogle Scholar
  27. Luikart G, Pilgrim K, Visty J, Ezenwa VO, Schwartz MK (2008b) Candidate gene microsatellite variation is associated with parasitism in wild bighorn sheep. Biol Lett 4:228–231PubMedCrossRefGoogle Scholar
  28. McKelvey KS, Schwartz MK (2005) DROPOUT: a program to identify problem loci and samples for noninvasive genetic sampling in a capture-mark-recapture framework. Mol Ecol Notes 5:716–718CrossRefGoogle Scholar
  29. Mosmann RR, Sad S (1996) The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 17:138–146PubMedCrossRefGoogle Scholar
  30. Ozut D (2001) Conservation genetics of Anatolian mouflon (Ovis gmelinii anatolica, Valenciennes, 1858). M.Sc. Middle East Technical University, Ankara, TurkeyGoogle Scholar
  31. Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65PubMedCrossRefGoogle Scholar
  32. Paterson S (1998) Evidence for balancing selection at the major histocopatibility complex in a free-living ungulate. J Hered 89:289–294PubMedCrossRefGoogle Scholar
  33. Payseur BA, Cutter AD, Nachman MW (2002) Searching for evidence of positive selection in the human genome using patterns of microsatellite variability. Mol Biol Evol 7:1143–1153Google Scholar
  34. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  35. Pidancier N, Jordan S, Luikart G, Taberlet P (2006) Evolutionary history of the genus Capra (Mammalia, Artiodactyla): Discordance between mitochondrial DNA and Y-chromosome phylogenies. Mol Phylogenet Evol 40:349–739CrossRefGoogle Scholar
  36. Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: A computer program for detecting recent reductions in effective population size from allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  37. Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539PubMedCrossRefGoogle Scholar
  38. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201PubMedCrossRefGoogle Scholar
  39. Rasmussen LK, Johnsen LB, Petersen TE, Sorensen ES (2002) GLYCAM-1 mRNA is expressed in the mammary gland as splicing variants and encodes various aberrant truncated proteins. Immunol Lett 83:73–75PubMedCrossRefGoogle Scholar
  40. Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283CrossRefGoogle Scholar
  41. Schaller B (2007) A proposal for a Pamir International Peace Park. USDA Forest Serv Proc RMRS 49:227–231Google Scholar
  42. Schaller GB, Kang AL (2008) Status of Marco Polo sheep Ovis ammon polii in China and adjacent countries: conservation of a vulnerable subspecies. Oryx 42:100–106CrossRefGoogle Scholar
  43. Schaller GB, Li H, Lu H, Ren JR, Qiu MJ, Wang HB (1987) Status of large mammals in the Taxkorgan Reserve, Xinjiang, China. Biol Conserv 42:53–71CrossRefGoogle Scholar
  44. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33PubMedCrossRefGoogle Scholar
  45. Shackleton DM (ed) (1997) Wild sheep and goats and their relatives: status survey and conservation action plan for Caprinae. IUCN, Gland and Cambridge, 390 ppGoogle Scholar
  46. Simões P, Pascual M, Santos J, Rose MR, Matos M (2008) Evolutionary dynamics of molecular markers during local adaptation: a case study in Drosophila subobscura. BMC Evol Biol 8:66–77PubMedCrossRefGoogle Scholar
  47. Taberlet P, Waits LP, Luikart G (1999) Non-invasive genetic sampling: look before you leap. Trends Ecol Evol 14:323–327PubMedCrossRefGoogle Scholar
  48. Tserenbataa T, Ramey RR II, Ryder OA, Quinn TW, Reading RP (2004) A population genetic comparison of argali sheep (Ovis ammon) in Mongolia using the ND5 gene of mitochondrial DNA; implications for conservation. Mol Ecol 13:1333–1339PubMedCrossRefGoogle Scholar
  49. Vasemägi A, Nilsson J, Primmer CR (2005) Expressed sequence tag-linked microsatellites as a source of gene-associated polymorphisms for detecting signatures of divergent selection in Atlantic salmon (Salmo salar L.). Mol Biol Evol 22:1067–1076PubMedCrossRefGoogle Scholar
  50. Waits L, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256PubMedCrossRefGoogle Scholar
  51. Watterson GA (1978) The homozygosity test of neutrality. Genetics 88:405–417Google Scholar
  52. Weinberg PI, Fedosenko AK, Arabuli AB, Myslenkov A, Romashin AV, Voloshina I, Zheleznov N (1997) The Commonwealth of Independent States (former USSR) pages 172–193. In: Shackleton DS (ed) Wild sheep and goats and their relatives: Status survey and conservation action plan for Caprinae. IUCN/SSC Caprinae Specialist Group, IUCN, Gland, Switzerland and Cambridge, p 390Google Scholar
  53. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST doesn’t equal 1/(4Nm + 1). Heredity 82:117–125PubMedCrossRefGoogle Scholar
  54. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191PubMedGoogle Scholar
  55. Worley K, Carey J, Veitch A, Coltman DW (2006) Detecting the signature of selection on immune genes in highly structured populations of wild sheep (Ovis dalli). Mol Ecol 15:623–637PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • G. Luikart
    • 1
    • 2
    • 3
    Email author
  • S. J. Amish
    • 2
  • J. Winnie
    • 4
  • A. Beja-Pereira
    • 3
  • R. Godinho
    • 3
  • F. W. Allendorf
    • 2
  • R. B. Harris
    • 4
  1. 1.Fish and Wildlife Genomics Group, Flathead Lake Biological StationUniversity of MontanaPolsonUSA
  2. 2.Fish and Wildlife Genomics Group, Division of Biological SciencesUniversity of MontanaMissoulaUSA
  3. 3.CIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosUniversidade do PortoVairãoPortugal
  4. 4.Department of Ecosystem and Conservation ScienceUniversity of MontanaMissoulaUSA

Personalised recommendations