Conservation Genetics

, Volume 12, Issue 3, pp 783–792 | Cite as

Conservation genetics of the black rhinoceros, Diceros bicornis bicornis, in Namibia

  • Peter J. Van Coeverden de GrootEmail author
  • Andrea S. Putnam
  • Peter Erb
  • Candace Scott
  • Don Melnick
  • Colleen O’Ryan
  • Peter T. Boag
Research Article


Poaching and habitat destruction across sub-Saharan Africa brought the black rhinoceros (Diceros bicornis) close to extinction. Over the past few decades, however, one of four subspecies, D. b. bicornis, has experienced a significant population increase as a consequence of its protection within Etosha National Park (ENP), Namibia. We report here on the level and spatial distribution of black rhinoceros genetic diversity within ENP. Using nine microsatellite loci, genetic variation was assessed from 144 individuals. Our results are consistent with the observation of lower levels of genetic diversity in D. b. bicornis, when compared to D. b. michaeli, but greater diversity when compared to D. b. minor. We also showed that ENP’s black rhino genetic diversity is well represented in Waterberg National Park, originally founded with ENP individuals. We found no genetic signature of a recent bottleneck in ENP, however, suggesting that the genetic diversity within ENP has not been adversely affected by the recent severe population decline. Using Bayesian clustering methods, we observed no significant population structure within ENP, but positive spatial genetic correlation is observed at distances up to 25 km. This relationship exists in females but not males, suggesting reduced dispersal among females, the first evidence of limited female dispersal or philopatry in any species of rhinoceros.


Conservation genetics Diceros bicornis Microsatellite Spatial autocorrelation 



The authors would like to thank Peter Smouse and Al Roca for many helpful comments on the manuscript. The collection of samples was funded by the WWF—Africa Rhino Program, Swiss Federal Veterinary Office, African Wildlife Foundation and the Ismer family and friends. The molecular work was funded by the National Science and Engineering Research Council (Canada; PTB) and multiple Summer Work Experience Program grants (Queen’s: PJVCDG & PTB). We thank Michael Kim for his laboratory assistance at the onset of this project.


  1. Allendorf FW, Leary RF (1986) Hetozygosity and fitness in natural populations of animals. In: Soule ME (ed) Conservation biology: the science of scarcity and diversity. Sinauer Associates, Sunderland, MA, pp 57–76Google Scholar
  2. Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029PubMedGoogle Scholar
  3. Brown SM, Houlden BA (1999) Isolation and characterization of microsatellite markers in the black rhinoceros (Diceros bicornis). Mol Ecol 8:1559–1561PubMedCrossRefGoogle Scholar
  4. Brown SM, Houlden BA (2000) Conservation genetics of the black rhinoceros (Diceros bicornis). Cons Genet 1:365–370CrossRefGoogle Scholar
  5. Cardillo M, Mace GM, Jones KE et al (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241PubMedCrossRefGoogle Scholar
  6. Chen C, Durand E, Forbes F, Francois O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756CrossRefGoogle Scholar
  7. CITES (2007) Black rhinoceros conservation and management in Namibia. Available at: Accessed 29 July 2010
  8. CITES (2009) Black Rhinoceros Conservation and Management in Namibia. Available at: Accessed 29 July 2010
  9. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  10. Cunningham J, Harley EH, O’Ryan C (1999) Isolation and characterization of microsatellite loci in black rhinoceros (Diceros bicornis). Electrophoresis 20:1778–1780PubMedCrossRefGoogle Scholar
  11. Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166PubMedCrossRefGoogle Scholar
  12. Dinerstein E, McCracken GF (1990) Endangered greater one-horned rhinoceros carry high levels of genetic variation. Conserv Biol 4:417–422CrossRefGoogle Scholar
  13. Du Toit R, Foose TJ, Cummings DHM (1987) Small population management of black rhino. In: Proceedings of African Rhino Workshop, Cincinnati, October 1986. 9:31–34Google Scholar
  14. Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973PubMedCrossRefGoogle Scholar
  15. Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445PubMedCrossRefGoogle Scholar
  16. Ellegren H, Moore S, Robinson N et al (1997) Microsatellite evolution—a reciprocal study of repeat lengths at homologous loci in cattle and sheep. Mol Biol Evol 14:854–860PubMedGoogle Scholar
  17. Emslie R, Brooks M (1999) African Rhinoceros status and conservation action plan. IUCN/SSC African Rhino Specialist Group. IUCN, Gland, Switzerland and Cambridge, UKGoogle Scholar
  18. Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Lagopus leucura). Mol Ecol 17:1905–1917PubMedCrossRefGoogle Scholar
  19. Fernando P, Polet G, Foead N et al (2006) Genetic diversity, phylogeny and conservation of the Javan rhinoceros (Rhinoceros sondaicus). Cons Genet 7:439–448CrossRefGoogle Scholar
  20. François O, Ancelet S, Guillot G (2006) Bayesian clustering using hidden Markov random fields in spatial population genetics. Genetics 174:805–816PubMedCrossRefGoogle Scholar
  21. François O, Blum MG, Jakobsson M, Rosenberg NA (2008) Demographic history of european populations of Arabidopsis thaliana. PLoS Genet 4:e1000075PubMedCrossRefGoogle Scholar
  22. Goddard J (1966) Mating and courtship of the black rhinoceros. Afr J Ecol 4:69–75CrossRefGoogle Scholar
  23. Goudet J (2000) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available at: Accessed 29 July 2010
  24. Goudet J, Raymond M, de Meeüs T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedGoogle Scholar
  25. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  26. Guo SW, Thompson EA (1992) Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48:361–372PubMedCrossRefGoogle Scholar
  27. Hailer F, Helander B, Folkestad AO et al (2006) Bottlenecked but long-lived: high genetic diversity retained in white-tailed eagles upon recovery from population decline. Biol Lett 2:316–319PubMedCrossRefGoogle Scholar
  28. Harley EH, Baumgarten I, Cunningham J, O’Ryan C (2005) Genetic variation and population structure in remnant populations of black rhinoceros, Diceros bicornis, in Africa. Mol Ecol 14:2981–2990PubMedCrossRefGoogle Scholar
  29. Hazlitt SL, Eldridge MD, Goldizen AW (2004) Fine-scale spatial genetic correlation analyses reveal strong female philopatry within a brush-tailed rock-wallaby colony in southeast Queensland. Mol Ecol 13:3621–3632PubMedCrossRefGoogle Scholar
  30. Hofmeyr JM, Ebedes H, Fryer REM, De Bruine JR (1975) The capture and translocation of the black rhinoceros (Diceros bicornis) in South West-Africa. Modoqua 9:35–44Google Scholar
  31. Hrabar H, Du Toit JT (2005) Dynamics of a protected black rhino (Diceros bicornis) population: Pilanesberg National Park, South Africa. Anim Conserv 8:259–267CrossRefGoogle Scholar
  32. Hutchins M, Kreger MD (2006) Rhinoceros behavior: implications for captive management and conservation. Int Zoo Year 40:150–173CrossRefGoogle Scholar
  33. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806PubMedCrossRefGoogle Scholar
  34. Joubert (1971) The past and present distribution and status of the black rhinoceros (Diceros bicornis) in southwest Africa. Modoqua 4:33–43Google Scholar
  35. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  36. Kiwia HYD (1989) Ranging patterns of the black rhinoceros (Diceros bicornis (L.)) in Ngorongoro Crater, Tanzania. Afr J Ecol 27:305–312CrossRefGoogle Scholar
  37. Lent PC, Fike B (2003) Home ranges, movements and spatial relationships in an expanding population of black rhinoceros in the Great Fish River Reserve, South Africa. South Afr J Wildlife Res 33:109–118Google Scholar
  38. Linklater WL, Swaisgood RR (2008) Reserve size, conspecific density, and translocation success for black rhinoceros. J Wildl Manage 72:1059–1068CrossRefGoogle Scholar
  39. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247PubMedCrossRefGoogle Scholar
  40. Marth GT, Czabarka E, Murvai J, Sherry ST (2004) The allele frequency spectrum in genome-wide human variation data reveals signals of differential demographic history in three large world populations. Genetics 166:351–372PubMedCrossRefGoogle Scholar
  41. Martin EB (1994) Rhino Poaching in Namibia from 1980 to 1990 and the Illegal Trade in the Horn. Pachyderm 18:39–51Google Scholar
  42. Maruyama T, Fuerst PA (1985) Population bottlenecks and nonequilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–689PubMedGoogle Scholar
  43. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  44. O’Ryan C, Flamand JRB, Harley EH (1994) Mitochondrial DNA variation in black rhinoceros (Diceros bicornis): conservation management implications. Conserv Biol 8:495–500CrossRefGoogle Scholar
  45. Owen-Smith RN (1975) The Social Ethology of the White Rhinoceros Ceratotberium simum (Burchell 1817*). Zeitschrift für Tierpsychologie 38:337–384CrossRefGoogle Scholar
  46. Owen-Smith RN (2004) Rhinoceroces. In: Hutchins M, Kleiman DG, Geist V, McDade M (eds) Grzimek’s animal life encyclopedia. Gale Group, Farmington Hills, MI, pp 249–262Google Scholar
  47. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  48. Peakall R, Ruibal M, Lindenmayer DB (2003) Spatial autocorrelation analysis offers new insights into gene flow in the Australian bush rat, Rattus fuscipes. Evolution 57:1182–1195PubMedGoogle Scholar
  49. Piry S, Luikart G, Cornuet JM (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502CrossRefGoogle Scholar
  50. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  51. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248Google Scholar
  52. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  53. Rubenstein DI (1986) Ecology and sociality in horses and zebras. In: Rubenstein DI, Wrangham RW (eds) Ecological aspects of social evolution. Princeton University Press, Princeton, NJGoogle Scholar
  54. Sokal RR, Rohlf FJ (1995) Biometry. WH Freeman and Company, New York, NYGoogle Scholar
  55. Spiegelhalter DJ, Best NG, Carlin BP, van der Linde A (2002) Bayesian measures of model complexity and fit. J R Stat Soc B Methodol 64:583–616CrossRefGoogle Scholar
  56. Swart MKJ, Ferguson JWH (1997) Conservation implications of genetic differentiation in southern African populations of black rhinoceros (Diceros bicornis). Conserv Biol 11:79–83CrossRefGoogle Scholar
  57. Swart MK, Ferguson JW, du Toit R, Flamand JR (1994) Substantial genetic variation in southern African black rhinoceros (Diceros bicornis). J Hered 85:261–266PubMedGoogle Scholar
  58. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  59. Tishkoff SA, Reed FA, Friedlaender FR et al (2009) The genetic structure and history of Africans and African Americans. Science 324:1035–1044PubMedCrossRefGoogle Scholar
  60. Zhang Y, Wang X, Ryder OA et al (2002) Genetic diversity and conservation of endangered animal species. Pure Appl Chem 74:575–584CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Peter J. Van Coeverden de Groot
    • 1
    Email author
  • Andrea S. Putnam
    • 2
  • Peter Erb
    • 3
  • Candace Scott
    • 1
  • Don Melnick
    • 4
  • Colleen O’Ryan
    • 5
  • Peter T. Boag
    • 1
  1. 1.Department of BiologyQueen’s UniversityKingstonCanada
  2. 2.San Diego Zoo GlobalSan DiegoUSA
  3. 3.Ministry of Environment and TourismWindhoekNamibia
  4. 4.Department of Ecology, Evolution, and Environmental BiologyColumbia UniversityNew YorkUSA
  5. 5.Department of Molecular and Cell BiologyUniversity of Cape TownRondeboschSouth Africa

Personalised recommendations