Genetic structure of the critically endangered plant Tricyrtis ishiiana (Convallariaceae) in relict populations of Japan

Abstract

Tricyrtis ishiiana is a relic endemic plant taxon of the Convallariaceae that inhabits two nearby gorges in Kanagawa Prefecture, Japan. The distribution range and number of populations are thought to have been reduced to the present refugial populations during the Quaternary climatic oscillations. Because of its showy flowers, this plant has faced illegal removal from its natural habitats for horticultural use and has been designated a critically endangered species (class IA). In this study, we analyzed the genetic structure of the relict populations of T. ishiiana in order to contribute to the conservation strategies of the prefectural government. Our analyses of nine nuclear microsatellite loci detected high genetic diversity (HE = 0.704 and HO = 0.541) for the two populations. The two populations were slightly differentiated (RST = 0.032), accompanied by faint substructure across the populations (K = 3). In addition, each population exhibited spatial genetic structuring. The relatively low inbreeding coefficient for both populations together (FIS = 0.233) and each population separately (FIS = 0.217–0.246) may be attributable to crossing among descendants within a population along with occasional gene flow between the populations. These results suggested that the extant populations have not experienced a severe bottleneck. The two extant populations were genetically differentiated at a very low level, accompanied by occasional pollen flow via pollinators and/or seed dispersal by gravity in the mountainous environment. Occasional gene exchange between the populations has allowed T. ishiiana to harbor high genetic diversity despite being a relic plant confined to two small refugial populations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Cornuet JM, Luikart G (1996) Description and evaluation of two tests for detecting recent bottlenecks. Genetics 144:2001–2014

    PubMed  CAS  Google Scholar 

  2. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from plant tissue. Focus 12:13–15

    Google Scholar 

  3. Edwards AL, Wyatt R (1994) Population genetics of the rare Asclepias texana and its widespread sister species, A. perennis. Syst Bot 19:291–307

    Article  Google Scholar 

  4. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839

    Article  Google Scholar 

  5. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    PubMed  Article  CAS  Google Scholar 

  6. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  7. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  8. Godt MJW, Walker J, Hamrick JL (1997) Genetic diversity in the endangered lily Harperocallis flava and a close relative, Tofieldia racemosa. Conser Biol 11:361–366

    Article  Google Scholar 

  9. Goudet J (1995) Fstat version 1.2: a computer program to calculate F statistics. J Hered 86:485–486

    Google Scholar 

  10. Goudet J, Raymond M, De-Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940

    PubMed  CAS  Google Scholar 

  11. Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyze spatial genetic structure at the individual or population level. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  12. Ikeda H, Senni K, Fujii N, Setoguchi H (2006) Refugia of Potentilla matsumurae (Rosaceae) located at high mountains in the Japanese archipelago. Mol Ecol 15:3731–3740

    PubMed  Article  CAS  Google Scholar 

  13. Japan Society of Plant Taxonomists (1993) Red Data Book: Japanese endangered plants. Nousonbunka-sha, Tokyo (in Japanese)

  14. Linhart YB, Permoli AC (1993) Genetic variation in Altes acaulis and its relative, the narrow endemic A. humilis (Apiaceae). Am J Bot 80:598–605

    Article  Google Scholar 

  15. Luikart G, Allendorf FW, Cornuet JM, Sherwin WB (1998) Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered 89:238–247

    PubMed  Article  CAS  Google Scholar 

  16. Lumaret R, Mir C, Michaud H, Raynal V (2002) Phylogeograpical variation of chloroplast DNA in holm oak (Quercus ilex L.). Mol Ecol 11:2327–2336

    PubMed  Article  CAS  Google Scholar 

  17. Maki Y, Morita H, Oiki S, Takahashi H (1999) The effect of geographic range and dichogamy on genetic variability and population genetic structure in Tricyrtis section Flavae (Liliaceae). Am J Bot 86:287–292

    Article  Google Scholar 

  18. Maruyama T, Fuerst PA (1985) Population bottlenecks and non equilibrium models in population genetics. II. Number of alleles in a small population that was formed by a recent bottleneck. Genetics 111:675–678

    PubMed  CAS  Google Scholar 

  19. Ministry of the Environment of Japan (2000) Threatened wildlife of Japan, Red Data Book, vol 8, 2nd ed (vascular plants). Japan Wildlife Research Center, Tokyo (in Japanese)

  20. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  21. Palmé AE, Vendramin GG (2002) Chloroplast DNA variation, postglacial recolonization and hybridization in hazel, Corylus avellana. Mol Ecol 11:1769–1779

    PubMed  Article  Google Scholar 

  22. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  23. Petit RJ, Brewer S, Bordács S, Burg K, Cheddadi R, Coart E, Cottrell J, Csaikl UM, van Dam B, Deans JD, Espinel S, Fineschi S, Finkeldey R, Glaz I, Goicoechea PG, Jensen JS, König AO, Lowe AJ, Madsen SF, Mátyás G, Munro RC, Popescu F, Slade D, Tabbener H, de Vries SGM, Ziegenhagen B, de Beaulieu JL, Kremer A (2002) Identification of refugia and post-glacial colonization routes of European white oaks based on chloroplast DNA and fossil pollen evidence. For Ecol Manag 156:49–74

    Article  Google Scholar 

  24. Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Muller-Starck GM, Demesure-Musch B, Palme A, Martin JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    PubMed  Article  CAS  Google Scholar 

  25. Piry S, Luikart G, Cornuet JM (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  26. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  27. Purdy BG, Bayer RJ (1995a) Allozyme variation in the Athabasca sand dune endemic, Salix silicicola, and the closely related widespread species, S. alaxensis. Syst Bot 20:179–190

    Article  Google Scholar 

  28. Purdy BG, Bayer RJ (1995b) Genetic diversity in the tetraploid sand dune endemic Deshampia mackenzieana and its widespread progenitor D. cespitosa (Poaceae). Am J Bot 82:121–130

    Article  Google Scholar 

  29. Purdy BG, Bayer RJ (1996) Genetic variation in populations of the endemic Achillea millefolium ssp. megacephala from the Athabasca sand dunes and the widespread ssp. lanulosa in western North America. Can J Bot 74:1138–1146

    Article  Google Scholar 

  30. Qiu YX, Sun Y, Zhang XP, Lee J, Fu CX, Comes HP (2009) Molecular phylogeography of East Asian Kirengeshoma (Hydrangeaceae) in relation to quaternary climate change and landbridge configurations. New Phytol 183:480–495

    PubMed  Article  CAS  Google Scholar 

  31. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evol Int J Org Evol 43:258–275

    Article  Google Scholar 

  32. Rousset F (1996) Equilibrium values of measures of population subdivision for stepwise mutation processes. Genetics 142:1357–1362

    PubMed  CAS  Google Scholar 

  33. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    PubMed  CAS  Google Scholar 

  34. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the Europe Alps. Mol Ecol 14:3547–3555

    PubMed  Article  Google Scholar 

  35. Setoguchi H, Ohba H (1995) Phylogenetic relationships in Crossostylis inferred from restriction site variation of chloroplast DNA. J Plant Res 108:87–92

    Article  CAS  Google Scholar 

  36. Setoguchi H, Mitsui Y, Ikeda H, Nomura N, Tamura A (2009) Development and characterization of microsatellite loci in the endangered Tricyrtis ishiiana (Convallariaceae), a local endemic plant in Japan. Conserv Genet 10:705–707

    Article  CAS  Google Scholar 

  37. Sherman-Broyles SL, Gibson JP, Hamrick JL, Bucher MA, Gibson MJ (1992) Compariosn of allozyme diversity among rare and widespread Rhus species. Syst Bot 17:551–559

    Article  Google Scholar 

  38. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequency. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  39. Takahashi H (1993) Floral biology of Tricyrtis macranthopsis Masamune and T. ishiiana (Kitagawa et T. Koyama) Ohwi et Okuyama (Liliaceae). Acta Phytotaxonomica et Geobotanica 44:141–150

    Google Scholar 

  40. Takahashi Y, Takahashi H, Maki Y Comparison of genetic variation and differentiation using microsatellite markers among three rare threatened and one widespread toad lily species of Tricyrtis section Flavae (Convallariaceae) in Japan. Plant Species Biol (in press)

  41. Watterson GA (1978) The homozygosity test of neutrality. Genetics 88:405–417

    PubMed  CAS  Google Scholar 

  42. Watterson GA (1986) The homozygosity test after a change in population size. Genetics 112:899–907

    PubMed  CAS  Google Scholar 

  43. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  44. Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  45. Wright S (1943) Isolation by distance. Genetics 28:114–138

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ms. Akiko Sakai (Kanagawa Prefecture Natural Environment Conservation Center), and Asuka Noda, Kanako Sugahara and Tomomi Dan (Kyoto University) for their cooperation in collecting materials and extracting DNA, respectively. Prof. Masayuki Maki (Tohoku University) kindly showed us his unpublished data (currently in press). This study was supported by a grant for Conservation Genetics for Endangered Plants from Kanagawa Prefecture Natural Environment Conservation Center.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Setoguchi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Setoguchi, H., Mitsui, Y., Ikeda, H. et al. Genetic structure of the critically endangered plant Tricyrtis ishiiana (Convallariaceae) in relict populations of Japan. Conserv Genet 12, 491–501 (2011). https://doi.org/10.1007/s10592-010-0156-y

Download citation

Keywords

  • Convallariaceae
  • Gene flow
  • Microsatellite
  • Refugia
  • Tricyrtis ishiiana