Conservation Genetics

, Volume 12, Issue 2, pp 423–431

Phylogeographic analysis of nuclear and mtDNA supports subspecies designations in the ostrich (Struthio camelus)

  • Joshua M. Miller
  • Sara Hallager
  • Steven L. Monfort
  • John Newby
  • Kelley Bishop
  • Scott A. Tidmus
  • Peter Black
  • Bill Houston
  • Conrad A. Matthee
  • Robert C. Fleischer
Research Article

Abstract

We investigated the phylogeography and subspecies classification of the ostrich (Struthio camelus) by assessing patterns of variation in mitochondrial DNA control region (mtDNA-CR) sequence and across fourteen nuclear microsatellite loci. The current consensus taxonomy of S. camelus names five subspecies based on morphology, geographic range, mtDNA restriction fragment length polymorphism and mtDNA-CR sequence analysis: S. c. camelus, S. c. syriacus, S. c. molybdephanes, S. c. massaicus and S. c. australis. We expanded a previous mtDNA dataset from 18 individual mtDNA-CR sequences to 123 sequences, including sequences from all five subspecies. Importantly, these additional sequences included 43 novel sequences of the red-necked ostrich, S. c. camelus, obtained from birds from Niger. Phylogeographic reconstruction of these sequences matches previous results, with three well-supported clades containing S. c. camelus/syriacus, S. c. molybdophanes, and S. c. massaicus/australis, respectively. The 14 microsatellite loci assessed for 119 individuals of four subspecies (all but S. c. syriacus) showed considerable variation, with an average of 13.4 (±2.0) alleles per locus and a mean observed heterozygosity of 55.7 (±5.3)%. These data revealed high levels of variation within most subspecies, and a structure analysis revealed strong separation between each of the four subspecies. The level of divergence across both marker types suggests the consideration of separate species status for S. c. molybdophanes, and perhaps also for S. c. camelus/syriacus. Both the mtDNA-CR and microsatellite analyzes also suggest that there has been no recent hybridization between the subspecies. These findings are of importance for management of the highly endangered red-necked subspecies (S. c. camelus) and may warrant its placement onto the IUCN red list of threatened animals.

Keywords

Struthio camelus Ostrich Africa Mitochondrial DNA control region Phylogeography Microsatellites 

Supplementary material

10592_2010_149_MOESM1_ESM.docx (18 kb)
Supplementary material 1 (DOCX 17 kb)

References

  1. Arctander P, Johansen C, Coutellec-Vreto M (1999) Phylogeography of three closely related African bovids (tribe Alcelaphini). Mol Biol 16:1724–1739Google Scholar
  2. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744PubMedCrossRefGoogle Scholar
  3. Barnett R, Yamaguchi N, Barnes I, Cooper A (2006) The origin, current diversity and future conservation of the modern lion (Panthera leo). Proc Royal Soc B 273:2119–2125CrossRefGoogle Scholar
  4. Brown L, Urban E, Newman K (1982) The Birds of Africa, vol 1. Academic Press, LondonGoogle Scholar
  5. Brown D, Brenneman R, Koepfli K-P et al (2007) Extensive population genetic structure in the giraffe. BMC Biology 5:57PubMedCrossRefGoogle Scholar
  6. Coltman DW, Pilkington JG, Pemberton JM (2003) Fine-scale genetic structure in a free-living ungulate population. Mol Ecol 12:733–742PubMedCrossRefGoogle Scholar
  7. Del-Hoyo J, Elliott A, Sargatal J (eds) (1992) Handbook of the birds of the world. volume 1: Ostrich to Ducks. Lynx Edicions, BarcelonaGoogle Scholar
  8. Dubach J, Patterson BD, Briggs MB et al (2005) Molecular genetic variation across the southern and eastern geographic ranges of the African lion, Panthera leo. Conserv Genet 6:15–24CrossRefGoogle Scholar
  9. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620PubMedCrossRefGoogle Scholar
  10. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinformatics 1:47–50Google Scholar
  11. Faulkes GC, Verheyen E, Verheyen W, Jarvis JUM, Bennett NC (2004) Phylogeographical patterns of genetic divergence and speciation in African mole-rats (Family: Bathyergidae). Mol Ecol 13:613–629PubMedCrossRefGoogle Scholar
  12. Flagstad O, Syvertsen PO, Stenseth NC, Jakobsen KS (2001) Environmental change and rates of evolution: the phylogeographic pattern within the hartebeest complex as related to climatic variation. Proc Royal Soc B 268:667–677CrossRefGoogle Scholar
  13. Fleischer RC, Olson S, James HF, Cooper AC (2000) The identity of the extinct Hawaiian eagle (Haliaeetus) as determined by mitochondrial DNA sequence. Auk 117:1051–1056CrossRefGoogle Scholar
  14. Freeman AR, Machugh DE, McKeown S et al (2001) Sequence variation in the mitochondrial DNA control region of wild African cheetahs (Acinonyx jubatus). Heredity 86:355–362PubMedCrossRefGoogle Scholar
  15. Freeman-Gallant CR (1996) Microgeographic patterns of genetic and morphological variation in savannah sparrows (Passerculus sandwichensis). Evolution 50:1631–1637CrossRefGoogle Scholar
  16. Freitag S, Robinson TJ (1993) Phylogeographic patterns in mitochondrial DNA of the ostrich (Struthio camelus). Auk 110:614–622Google Scholar
  17. Goldstein DB, Pollock DD (1997) Launching microsatellites: a review of mutation processes and methods of phylogenetic interference. Heredity 88:335–342Google Scholar
  18. Hewitt GM (2004) The structure of biodiversity—insights from molecular phylogeography. Front Zool 1(4). doi:10.1186/1742-9994-1-4
  19. Horváth MB, Martínez-Cruz B, Negro JJ, Kalmár L, Godoy JA (2005) An overlooked DNA source for non-invasive genetic analysis in birds. J Avian Biol 36:84–88CrossRefGoogle Scholar
  20. Huang Y, Liu Q, Tang B, Lin L, Liu W, Zhang L, Li N, Hu X (2008) A preliminary microsatellite genetic map of the ostrich (Struthio camelus). Cytogenet Genome Res 121:130–136PubMedCrossRefGoogle Scholar
  21. Jin L, Chakraborty R (1994) Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Mol Biol Evol 11:120–127PubMedGoogle Scholar
  22. Langella O (1999) Populations. 1.2.19. [http://bioinformatics.org/~tryphon/populations/]
  23. Lewis A, Pomeroy DE (1989) A bird atlas of Kenya. Balkema, RotterdamGoogle Scholar
  24. Maddison DR, Maddison WP (2001) MacClade 4: analysis of phylogeny and character evolution. Version 4.02. Sinauer Associates, SunderlandGoogle Scholar
  25. Moodley Y, Bruford MW (2007) Molecular biogeography: towards an integrated framework for conserving pan-african biodiversity. PLoS ONE 2:e454PubMedCrossRefGoogle Scholar
  26. Muwanika VB, Nyakaana S, Siegismund HR, Arctander P (2003) Phylogeography and population structure of the common warthog (Phacochoerus africanus) inferred from variation in mitochondrial DNA sequences and microsatellite loci. Heredity 91:361–372PubMedCrossRefGoogle Scholar
  27. Ostrowski S, Massalatchi MS, Mamane M (2001) Evidence of a dramatic decline of the red-necked ostrich Struthio camelus camelus in the Aïr and Ténéré National Nature Reserve, Niger. Oryx 35:349–352Google Scholar
  28. Page R (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  29. Partridge T, Wood B, de Menocal P (1995) The influence of global climate change and regional uplift on large-mammalian evolution in eastern and southern Africa. In: Vrba ES, Denton GH, Partridge TC (eds) Paleoclimate and evolution with emphasis on human origins. Yale University Press, London, pp 331–355Google Scholar
  30. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  31. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  32. Robinson TJ, Matthee CA (1999) Molecular genetic relationships of the extinct ostrich, Struthio camelus syriacus: consequences for ostrich introductions into Saudi Arabia. Anim Conserv 2:165–171CrossRefGoogle Scholar
  33. Rohland N, Pollack JL, Nagel D et al (2005) The population history of extant and extinct hyenas. Mol Biol Evol 22:2435–2443PubMedCrossRefGoogle Scholar
  34. Ruokonen M, Kvist L (2002) Structure and evolution of the avian mitochondrial control region. Mol Phylogenet Evol 23:422–432PubMedCrossRefGoogle Scholar
  35. Seddon PJ, Soorae PS (1999) Guidelines for subspecific substitutions in wildlife restoration projects. Conserv Biol 13:177–184CrossRefGoogle Scholar
  36. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771PubMedCrossRefGoogle Scholar
  37. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (* and other methods). version 4.0. Sinauer Associates, SunderlandGoogle Scholar
  38. Tang B, Huang Y, Lin L et al (2003) Isolation and characterization of 70 novel microsatellite markers from ostrich (Struthio camelus) genome. Genome 46:833–840PubMedCrossRefGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Joshua M. Miller
    • 1
  • Sara Hallager
    • 2
  • Steven L. Monfort
    • 3
  • John Newby
    • 4
  • Kelley Bishop
    • 4
  • Scott A. Tidmus
    • 5
  • Peter Black
    • 6
  • Bill Houston
    • 6
  • Conrad A. Matthee
    • 7
  • Robert C. Fleischer
    • 1
  1. 1.Center for Conservation and Evolutionary GeneticsSmithsonian Conservation Biology InstituteWashingtonUSA
  2. 2.Animal Care DirectorateSmithsonian National Zoological ParkWashingtonUSA
  3. 3.Smithsonian Conservation Biology InstituteNational Zoological ParkFront RoyalUSA
  4. 4.Sahara Conservation FundL’IsleSwitzerland
  5. 5.Animal Programs and Environmental InitiativesDisney’s Animal KingdomLake Buena VistaUSA
  6. 6.Saint Louis ZooOne Government DriveSt LouisUSA
  7. 7.Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa

Personalised recommendations