Advertisement

Conservation Genetics

, Volume 12, Issue 2, pp 577–582 | Cite as

Levels of connectivity between longnose skate (Dipturus oxyrinchus) in the Mediterranean Sea and the north-eastern Atlantic Ocean

  • Andrew M. Griffiths
  • David W. Sims
  • Andrew Johnson
  • Arve Lynghammar
  • Matthew McHugh
  • Torkild Bakken
  • Martin J. Genner
Short Communication

Abstract

Sequencing of a partial region of the mitochondrial control region has revealed no shared haplotypes between longnose skate (Dipturus oxyrinchus L.) sampled in the north-eastern Atlantic (Norway and Rockall) and those sampled in the Mediterranean (Mallorca). Bayesian estimation of the migration rate suggests little, if any, gene flow occurs between the regions and that the populations separated 20,000 years ago. These conclusions provide a genetic basis for long-standing observations, based on egg capsule and adult size, that longnose skate in the Mediterranean may be genetically isolated from other stocks. This result has important conservation implications for the threatened longnose skate.

Keywords

Elasmobranch Marine fishes Population Management Genetic differences Conservation 

Notes

Acknowledgments

We are grateful to MEDITS survey programme (IEO Mallorca), and F. Neat for supporting sample collection. This work was funded by the UK Natural Environment Research Council (NERC) Oceans 2025 Strategic Research Programme Theme 6 (Science for Sustainable Marine Resources) in which DWS and MJG are Principal Investigators. Additional funding was provided by the Fishmongers Company. MJG was supported by a Great Western Research Fellowship and DWS by an MBA Senior Research Fellowship.

References

  1. Chevolot M, Hoarau G, Rijnsdorp AD, Stam WT, Olsen JL (2006) Phylogeography and population structure of thornback rays (Raja clavata L., Rajidae). Mol Ecol 15:3693–3705. doi: 10.1111/j.1365-294X.2006.03043.x PubMedCrossRefGoogle Scholar
  2. Chevolot M, Wolfs PHJ, Palsson J, Rijnsdorp AD, Stam WT, Olsen JL (2007) Population structure and historical demography of the thorny skate (Amblyraja radiata, Rajidae) in the North Atlantic. Mar Biol 151:1275–1286. doi: 10.1007/s00227-006-0556-1 CrossRefGoogle Scholar
  3. Chow S, Takeyama H (2000) Nuclear and mitochondrial DNA analyses reveal four genetically separated breeding units of the swordfish. J Fish Biol 56:1087–1098CrossRefGoogle Scholar
  4. Clark RS (1922) Rays and skates (Raiae). No. 1 Egg-capsules and young. J Mar Biol Assoc UK 12:577–643Google Scholar
  5. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi: 10.1046/j.1365-294x.2000.01020.x PubMedCrossRefGoogle Scholar
  6. Dulvy NK, Reynolds JD (2002) Predicting extinction vulnerability in skates. Conserv Biol 16:440–450. doi: 10.1046/j.1523-1739.2002.00416.x CrossRefGoogle Scholar
  7. Dulvy NK, Metcalfe JD, Glanville J, Pawson MG, Reynolds JD (2000) Fishery stability, local extinctions, and shifts in community structure in skates. Conserv Biol 14:283–293. doi: 10.1046/j.1523-1739.2000.98540.x CrossRefGoogle Scholar
  8. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinf Online 1:47–50Google Scholar
  9. Griffiths AM, Sims DW, Cotterell SP, El Nagar A, Ellis JR, Lynghammar A, McHugh M, Neat FC, Pade NG, Queiroz N, Serra-Pereira B, Rapp T, Wearmouth VJ & Genner MJ (2010) Molecular markers reveal spatially segregated cryptic species in a critically endangered fish, the common skate (Dipturus batis). Proc R Soc Biol Sci B: doi: 10.1098/rspb.2009.2111
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. Hart MW, Sunday J (2007) Things fall apart: biological species form unconnected parsimony networks. Biol Lett 3:509–512. doi: 10.1098/rsbl.2007.0307 PubMedCrossRefGoogle Scholar
  12. Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276Google Scholar
  13. Hueter RE, Heupel MR, Heist EJ, Keeney DB (2005) Evidence of philopatry in sharks and implications for the management of shark fisheries. J Northw Atl Fish Sci 35:239–247. doi: 10.2960/J.v35.m493 Google Scholar
  14. Iglésias SP, Toulhoat L & Sellos DY (2010) Taxonomic confusion and market mislabelling of threatened skates: important consequences for their conservation status. Aquat Conserv: Mar Freshwat Ecosyst 20:319–333. doi: 10.1002/aqc.1083 CrossRefGoogle Scholar
  15. Keeney DB, Heist EJ (2006) Worldwide phylogeography of the blacktip shark (Carcharhinus limbatus) inferred from mitochondrial DNA reveals isolation of western Atlantic populations coupled with recent Pacific dispersal. Mol Ecol 15:3669–3679. doi: 10.1111/j.1365-294X.2006.03036.x PubMedCrossRefGoogle Scholar
  16. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. doi: 10.1093/bioinformatics/btp187 PubMedCrossRefGoogle Scholar
  17. McPhie RP, Campana SE (2009) Reproductive characteristics and population decline of four species of skate (Rajidae) off the eastern coast of Canada. J Fish Biol 75:223–246PubMedCrossRefGoogle Scholar
  18. Natoli A, Cañadas A, Concepción V, Politi E, Fernandez-Navarro P & Hoelzel AR (2008) Conservation genetics of the short-beaked common dolphin (Delphinus delphis) in the Mediterranean Sea and in the north-eastern Atlantic Ocean. Conserv Genet. doi  10.1007/s10592-007-9481-1
  19. Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896PubMedGoogle Scholar
  20. Ovenden J, Kashiwagi T, Broderick D, Giles J, Salini J (2009) The extent of population genetic subdivision differs among four co-distributed shark species in the Indo-Australian archipelago. BMC Evol Biol 9:40PubMedCrossRefGoogle Scholar
  21. Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16PubMedCrossRefGoogle Scholar
  22. Palumbi SR (1994) Genetic divergence, reproductive isolation and marine speciation. Annu Rev Ecol Syst 25:547–572CrossRefGoogle Scholar
  23. Patarnello T, Volckaert F, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444. doi: 10.1111/j.1365-294X.2007.03477.x PubMedCrossRefGoogle Scholar
  24. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818. doi: 10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  25. Reiss H, Hoarau G, Dickey-Collas M, Wolff WJ (2009) Genetic population structure of marine fish: mismatch between biological and fisheries management units. Fish Fish 10:361–395Google Scholar
  26. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  27. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 11:4673–4680CrossRefGoogle Scholar
  28. Valsecchi E, Pasolini P, Bertozzi M, Garoia F, Ungaro N, Vacchi M, Sabelli B, Tinti F (2005) Rapid Miocene-Pliocene dispersal and evolution of Mediterranean rajid fauna as inferred by mitochondrial gene variation. J Evol Biol 18:436–446. doi: 10.1111/j.1420-9101.2004.00829.x PubMedCrossRefGoogle Scholar
  29. Wearmouth VJ, Sims DW (2009) Movement and behaviour patterns of the critically endangered common skate Dipturus batis revealed by electronic tagging. J Exp Mar Biol Ecol 380:77–87CrossRefGoogle Scholar
  30. Wheeler A (1978) Key to the fishes of Northern Europe. Frederick Warne, LondonGoogle Scholar
  31. Yokoyama Y, Lambeck K, De Deckker P, Johnston P, Fifield LK (2000) Timing of the last glacial maximum from observed sea-level minima. Nature 406:713–716PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Andrew M. Griffiths
    • 1
  • David W. Sims
    • 1
    • 2
  • Andrew Johnson
    • 1
    • 3
  • Arve Lynghammar
    • 4
  • Matthew McHugh
    • 1
  • Torkild Bakken
    • 4
  • Martin J. Genner
    • 1
    • 5
  1. 1.The Laboratory, Marine Biological Association of the United KingdomCitadel Hill, PlymouthUK
  2. 2.Marine Biology and Ecology Research Centre, Marine Institute, School of Marine Sciences and EngineeringUniversity of PlymouthPlymouthUK
  3. 3.School of Ocean SciencesBangor UniversityAngleseyUK
  4. 4.Museum of Natural History and ArcheologyNorwegian University of Science and TechnologyTrondheimNorway
  5. 5.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations