Advertisement

Conservation Genetics

, Volume 11, Issue 6, pp 2431–2436 | Cite as

Species identification and genetic structure of threatened seahorses in Gran Canaria Island (Spain) using mitochondrial and microsatellite markers

  • Almudena López
  • Manuel Vera
  • Francisco Otero-Ferrer
  • Belén G. Pardo
  • Paulino Martínez
  • Lucía Molina
  • Carmen Bouza
Short Communication

Abstract

A non-invasive DNA analysis of seahorse populations was carried out after extensive underwater surveys in Gran Canaria Island (Spain). In this geographical area, the presence of two species, Hippocampus hippocampus and H. guttulatus, has been previously reported. Sequencing of 16S ribosomal DNA (16S rDNA) was used for specific identification of live seahorses sampled in situ, as a previous step to evaluate genetic structure based on ten microsatellite markers. Phylogenetic analyses revealed the presence of a single species, H. hippocampus, in the seahorse communities found at Gran Canaria. No evidences of H. guttulatus or interspecific hybrids were found based on 16S rDNA and microsatellite data. The nuclear markers revealed low genetic diversity and lack of population structure across populations of Gran Canaria Island, with evidence of small population sizes. This study provides critical information to support conservation strategies of Gran Canaria seahorses.

Keywords

Hippocampus hippocampus Hippocampus guttulatus Mitochondrial DNA Species identification Microsatellites Genetic structure 

Notes

Acknowledgments

This work was supported by the Spanish Goverment (MCYT-CGL2005-05927-C02/-C03) and Xunta de Galicia (PGIDIT06PXIC261075PN). We thank to the Canary Government (Consejería Medio Ambiente) for fieldwork permission. Also, thanks to Miquel Planas (CSIC,Vigo) for supplying Galician samples, María López and Sonia Gómez for technical assistance, and J. Antonio Álvarez-Dios for useful comments. B.G.P. is supported by Isidro Parga Pondal fellowship (Xunta de Galicia).

References

  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishing, MaldenGoogle Scholar
  2. BOC (2001) Boletín Oficial de Canarias. First August, 1110. Gobierno de CanariasGoogle Scholar
  3. Bortone SA, Van Tasell J, Brito A et al (1991) A visual assessment of the inshore fishes and fishery resources off El Hierro, Canary Islands: a baseline survey. Sci Mar 55:529–541Google Scholar
  4. Brito A, Pascual PJ, Falcón JM et al. (2002) Peces de las Islas Canarias. Catálogo comentado e ilustrado. Francisco Lemus Editor S.L., La LagunaGoogle Scholar
  5. Casey SP, Hall HJ, Stanley HF, Vincent ACJ (2004) The origin and evolution of seahorses (genus Hippocampus): a phylogenetic study using the cytochrome b gene of mitochondrial DNA. Mol Phylogenet Evol 30:261–272CrossRefPubMedGoogle Scholar
  6. Curtis JMR (2006) A case of mistaken identity: skin filaments are unreliable for identifying Hippocampus guttulatus and Hippocampus hippocampus. J Fish Biol 69:1855–1859CrossRefGoogle Scholar
  7. DeWoody JA, Avise JC (2000) Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol 56:461–473CrossRefGoogle Scholar
  8. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  9. Galbusera PH, Gillemot S, Jouk P et al (2007) Isolation of microsatellite markers for the endangered Knysna seahorse Hippocampus capensis and their use in the detection of a genetic bottleneck. Mol Ecol Notes 7:638–640CrossRefGoogle Scholar
  10. Goudet J (2001) Fstat, a program to estimate and test gene diversities and fixation indices, version 2.9.3. Available from http://www.unil.ch/izea/softwares/fstat.html
  11. Herrera R, Espino F, Garrido M, Haroun RJ (2002) Observations on fish colonization and predation on two artificial reefs in the Canary Islands. ICES J Mar Sci 59:69–73CrossRefGoogle Scholar
  12. Hubisz M, Falush D, Stephens M, Pritchard J (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332CrossRefGoogle Scholar
  13. IUCN (2010) IUCN red list of threatened species. Version 2010.2. Available in http://www.iucnredlist.org
  14. Kvarnemo C, Moore GI, Jones AG et al (2000) Monogamous pair bonds and mate switching in the Western Australian seahorse Hippocampus subelongatus. J Evol Biol 13:882–888CrossRefGoogle Scholar
  15. Lourie SA, Vincent ACJ, Hall HJ (1999) Seahorses: an identification guide to the world’s species and their conservation. Project Seahorse, London, U.KGoogle Scholar
  16. Lourie SA, Foster SJ, Cooper EWT, Vincent ACJ (2004) A guide to the identification of seahorses. Project Seahorse and TRAFFIC North America. Washington, D.C.: University of British Columbia and World Wildlife FundGoogle Scholar
  17. Luikart G, Ryman N, Tallmon DA et al (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373CrossRefGoogle Scholar
  18. Otero-Ferrer F, Herrera R, Molina L et al (2008) Estudios preliminares sobre las poblaciones naturales de caballito de mar, Hippocampus hippocampus, en Gran Canaria. In: Proceedings of XV Simpósio Iberico de Estudos de Biologia Marinha, Funchal (Portugal), 9–13 Sep 2008Google Scholar
  19. Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447CrossRefPubMedGoogle Scholar
  20. Pardo BG, López A, Martínez P, Bouza C (2007) Novel microsatellite loci in the threatened European long-snouted seahorse (Hippocampus guttulatus) for genetic diversity and parentage analysis. Conserv Genet 8:1243–1245CrossRefGoogle Scholar
  21. Planas M, Chamorro A, Quintas P, Vilar A (2008) Establishment and maintenance of threatened long-snouted seahorse, Hippocampus guttulatus, broodstock in captivity. Aquaculture 283:19–28CrossRefGoogle Scholar
  22. Raymond M, Rousset F (1995) Genepop Version 1.2.: population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  23. Sanders JG, Cribbs JE, Fienberg HG et al (2008) The tip of the tail: molecular identification of seahorses for sale in apothecary shops and curio stores in California. Conserv Genet 1:65–71CrossRefGoogle Scholar
  24. Tallmon DA, Koyuk A, Luikart G, Beaumont MA (2008) ONeSAMP: a program to estimate effective population size using approximate Bayesian computation. Mol Ecol Resour 8:299–301CrossRefGoogle Scholar
  25. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  26. Teske PR, Cherry MI, Matthee CA (2003) Population genetics of the endangered Knysna seahorse, Hippocampus capensis. Mol Ecol 12:1703–1715CrossRefPubMedGoogle Scholar
  27. Teske PR, Cherry MI, Matthee CA (2004) The evolutionary history of seahorses (Syngnathidae: Hippocampus): molecular data suggest a West Pacific origin and two invasions of the Atlantic Ocean. Mol Phylogenet Evol 30:273–286CrossRefPubMedGoogle Scholar
  28. Villares HP (2005) Estudio de la población del género Hippocampus en Gran Canaria: Experiencias preliminares de la viabilidad de cultivo. Tesis del Máster Internacional en Acuicultura. Universidad de las Palmas de Gran CanariaGoogle Scholar
  29. Wilson AB (2006) Interspecies mating in sympatric species of Syngnathus pipefish. Mol Ecol 15:809–824CrossRefPubMedGoogle Scholar
  30. Wilson AB, Martin-Smith M (2007) Genetic monogamy despite social promiscuity in the pot-bellied seahorse (Hippocampus abdominalis). Mol Ecol 16:2345–2352CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Almudena López
    • 1
  • Manuel Vera
    • 1
  • Francisco Otero-Ferrer
    • 2
  • Belén G. Pardo
    • 1
  • Paulino Martínez
    • 1
  • Lucía Molina
    • 2
  • Carmen Bouza
    • 1
  1. 1.Departamento de Xenética, Facultade de VeterinariaCampus de Lugo, Universidade de Santiago de CompostelaLugoSpain
  2. 2.Grupo de Investigación en AcuiculturaInstituto Canario de Ciencias Marinas and Universidad de Las Palmas de Gran CanariaTelde, Canary IslandsSpain

Personalised recommendations