Advertisement

Conservation Genetics

, Volume 11, Issue 2, pp 583–599 | Cite as

Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe

  • Nadia Mucci
  • Johanna Arrendal
  • Hermann Ansorge
  • Michael Bailey
  • Michaela Bodner
  • Miguel Delibes
  • Ainhoa Ferrando
  • Pascal Fournier
  • Christine Fournier
  • José A. Godoy
  • Petra Hajkova
  • Silke Hauer
  • Thrine Moen Heggberget
  • Dietrich Heidecke
  • Harri Kirjavainen
  • Hans-Heinrich Krueger
  • Kirsti Kvaloy
  • Lionel Lafontaine
  • József Lanszki
  • Charles Lemarchand
  • Ulla-Maija Liukko
  • Volker Loeschcke
  • Gilbert Ludwig
  • Aksel Bo Madsen
  • Laurent Mercier
  • Janis Ozolins
  • Momir Paunovic
  • Cino Pertoldi
  • Ana Piriz
  • Claudio Prigioni
  • Margarida Santos-Reis
  • Teresa Sales Luis
  • Torsten Stjernberg
  • Hans Schmid
  • Franz Suchentrunk
  • Jens Teubner
  • Risto Tornberg
  • Olaf Zinke
  • Ettore Randi
Research Article

Abstract

Eurasian otter populations strongly declined and partially disappeared due to global and local causes (habitat destruction, water pollution, human persecution) in parts of their continental range. Conservation strategies, based on reintroduction projects or restoration of dispersal corridors, should rely on sound knowledge of the historical or recent consequences of population genetic structuring. Here we present the results of a survey performed on 616 samples, collected from 19 European countries, genotyped at the mtDNA control-region and 11 autosomal microsatellites. The mtDNA variability was low (nucleotide diversity = 0.0014; average number of pairwise differences = 2.25), suggesting that extant otter mtDNA lineages originated recently. A star-shaped mtDNA network did not allow outlining any phylogeographic inference. Microsatellites were only moderately variable (H o = 0.50; H e = 0.58, on average across populations), the average allele number was low (observed A o = 4.9, range 2.5–6.8; effective A e = 2.8; range 1.6–3.7), suggesting small historical effective population size. Extant otters likely originated from the expansion of a single refugial population. Bayesian clustering and landscape genetic analyses however indicate that local populations are genetically differentiated, perhaps as consequence of post-glacial demographic fluctuations and recent isolation. These results delineate a framework that should be used for implementing conservation programs in Europe, particularly if they are based on the reintroduction of wild or captive-reproduced otters.

Keywords

Eurasian otter Mitochondrial DNA Microsatellites Bayesian clustering Spatial genetic structure Landscape genetics 

Notes

Acknowledgments

This study has been partly supported by the Italian Ministry of Environment, Department of Nature Conservation. We wish to thank the ConGen program (funded by the European Science Foundation) and the Danish Natural Science Research Council for financial support to C. Pertoldi (grant number: #21-01-0526, #21-03-0125 and 95095995). P. Hajkova was supported by the Grant Agency of the Academy of Sciences of the Czech Republic, grant no. KJB600930804 and by the Ministry of the Environment of the Czech Republic, grant no. VaV-SP/2d4/16/08. VaV-SP/2d4/16/08. We thank everybody who helped in sampling collection. In particular, for France, L. Lafontaine wishes to acknowledge all people who provided otter samples for this study, and/or belonging to the following networks : SFEPM, LPO, ONCFS (DRD CNERA-PAD, F. Léger, P. Migot, D. Serre), ONEMA, FDAPPMA, Parcs Naturels Régionaux de Brière (X. Moyon), du Morvan, MNHN (G. Véron) and Muséums d’Histoire Naturelle of La Rochelle, Orléans, Toulouse, ENV Nantes, ADEV, GMB, Syndicat du Bassin du Scorff, Station INRA Moulin des Princes, APPMA Plouay, Base du Douron, EDENN, AREMIP, LPO Marais Breton, Fédérations Départementales des Chasseurs and officers from the Office National de la Chasse et de la Faune Sauvage SD12, SD17, SD22, SD29, SD33, SD35, SD40, SD44, SD56, SD85. The careful revisions done by three anonymous referees, and additional comments by the Associated Editor, greatly aided us to improve early versions of this paper.

References

  1. Arrendal J, Walker CW, Sundqvist AK et al (2004) Genetic evaluation of an otter translocation program. Conserv Genet 5:79–88CrossRefGoogle Scholar
  2. Avise JC (1986) Mitochondrial DNA and evolutionary genetics of higher animals. Phil Trans R Soc Lond B 312:325–342CrossRefGoogle Scholar
  3. Bandelt HL, Forster P, Rohl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48PubMedGoogle Scholar
  4. Beaumont M (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029PubMedGoogle Scholar
  5. Belkhir K, Borsa P, Chikhi L et al. (2001) Genetix 4.02, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, France. http://www.genetix.univ-montp2.fr/genetix/genetix.htm
  6. Benzecri JP (1973) L’Analyse des donnees. Vol 2, L’Analyse des correspondances. Dunod, ParisGoogle Scholar
  7. Bifolchi A, Lodè T (2005) Efficiency of conservation shortcuts: an investigation with otters as umbrella species. Biol Conserv 126:523–527CrossRefGoogle Scholar
  8. Cassens I, Tiedemann R, Suchentrunk F, Hartl G (2000) Mitochondrial DNA variation in the European otter (Lutra lutra) and the use of spatial autocorrelation analysis in conservation. J Hered 91:31–35CrossRefPubMedGoogle Scholar
  9. Dallas JF, Piertney SB (1998) Microsatellite primers for the Eurasian otter. Mol Ecol 7:1247–1251CrossRefGoogle Scholar
  10. Dallas JF, Bacon PJ, Carss DN et al (1999) Genetic diversity in the Eurasian otter, Lutra lutra, in Scotland. Evidence from microsatellite polymorphism. Biol J Linn Soc 68:73–86CrossRefGoogle Scholar
  11. Dallas JF, Marshall F, Piertney SB et al (2002) Spatially restricted gene flow and reduced microsatellite polymorphism in the Eurasian otter Lutra lutra in Britain. Conserv Genet 3:15–29CrossRefGoogle Scholar
  12. Durbin LS (1996) Individual differences in spatial utilization of a river system by otters Lutra lutra. Acta Theriol 41:137–147Google Scholar
  13. Edmands S (2007) Between a rock and a hard place: evaluating the relative risks of inbreeding and outbreeding for conservation and management. Mol Ecol 16:463–475CrossRefPubMedGoogle Scholar
  14. Effenberger S, Suchentrunk F (1999) RFLP analysis of mitochondrial DNA of otters (Lutra lutra) from Europe. Implications for the conservation of a flagship species. Biol Conserv 90:229–234CrossRefGoogle Scholar
  15. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolut Bioinform Online 1:47–50Google Scholar
  16. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  17. Ferrando A, Ponsà M, Marmi J, Domingo-Roura X (2004) Eurasian otters, Lutra lutra, have a dominant mtDNA haplotype from the Iberian Peninsula to Scandinavia. J Hered 95:430–435CrossRefPubMedGoogle Scholar
  18. Finnegan LA, Néill LÓ (2009) Mitochondrial DNA diversity of the Irish otter, Lutra lutra, population. Conserv Genet. doi: 10.1007/s10592-009-9955-4
  19. Fiore I, Gala M, Tagliacozzo A (2004) Ecology and subsistence strategies in the eastern Italian Alps during the Middle Palaeolithic. Int J Osteoarchaeol 14:273–286CrossRefGoogle Scholar
  20. Foster-Turley P, Santiapillai C (1990) Action plan for Asian otters. In: Foster-Turley P, Macdonald SM, Mason CF (eds) Otters: an action plan for their conservation. IUCN, Gland, SwitzerlandGoogle Scholar
  21. Garnier S, Alibert P, Audiot P et al (2004) Isolation by distance and sharp discontinuities in gene frequencies: implications for the phylogeography of an alpine insect species, Carabus somieri. Mol Ecol 13:1883–1897CrossRefPubMedGoogle Scholar
  22. Gerloff U, Schlotterer C, Rassmann K et al (1995) Amplification of hypervariable simple sequence repeats (microsatellites) from excremental DNA of wild living Bonobos (Pan paniscus). Mol Ecol 4:515–518CrossRefGoogle Scholar
  23. Guillot G, Mortier F, Estoup A (2005) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:712–715CrossRefGoogle Scholar
  24. Hajkova P, Pertoldi C, Zemanova B et al (2007) Genetic structure and evidence for recent population decline in Eurasian otter populations in the Czech and Slovak Republics: implications for conservation. J Zool 272:1–9CrossRefGoogle Scholar
  25. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913CrossRefPubMedGoogle Scholar
  26. IUCN (1998) Guidelines for re-introductions. Prepared by the IUCN/SSC re-introduction specialist group. IUCN, Gland and CambridgeGoogle Scholar
  27. Jakobsson M, Rosenberg NA (2007) Clumpp: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806CrossRefPubMedGoogle Scholar
  28. Jansman HAH, Chanin PRF, Dallas JF (2001) Monitoring otter populations by DNA typing of spraints. IUCN Otter Spec Group Bull 18:12–19Google Scholar
  29. Janssens X, Fontaine MC, Michaux JR et al (2008) Genetic pattern of the recent recovery of European otters in southern France. Ecography 31(2):176–186CrossRefGoogle Scholar
  30. Jefferies DJ, Wayre P, Jessop RM, Mitchell-Jones AJ (1986) Reinforcing the native otter Lutra lutra population in East Anglia: an analysis of the behavior and range development of the first release group. Mamm Rev 16:65–79CrossRefGoogle Scholar
  31. Ketmaier V, Bernardini C (2005) Structure of the mitochondrial control-region of the Eurasian Otter (Lutra lutra; Carnivora, Mustelidae): patterns of genetic heterogeneity and implications for conservation of the species in Italy. J Hered 96:318–328CrossRefPubMedGoogle Scholar
  32. Ki JS, Hwang DS, Park TJ et al (2009) A comparative analysis of the complete mitochondrial genome of the Eurasian otter, Lutra lutra (Carnivora; Mustelidae) Mol Biol Rep. doi: 10.1007/s11033-009-9641-0
  33. Koelewijn HP, Jansman HAH (2007) The Dutch otter reintroduction project: what non-invasive genetic sampling told us about social structure and behaviour in a low density population. In: Proceedings of V European congress of mammalogy, Siena, Italy. Hystrix It J Mamm, 2:524, 21–26 September 2007Google Scholar
  34. Koepfli KP, Wayne RK (1998) Phylogenetic relationships of otters (Carnivora: Mustelidae) based on mitochondrial Cytochrome b sequences. J Zool 246:401–416CrossRefGoogle Scholar
  35. Koepfli KP, Kanchanasaka B, Sasaki H, Jacques H, Louie KDY, Hoai T, Xuan Dang N, Geffen E, Gutleb A, Han S, Heggberget TM, Lionel LaFontaine L, Lee H, Roland Melisch R, Ruiz-Olmo J, Santos-Reis M, Sidorovich VE, Stubbe M, Wayne RK (2008) Establishing the foundation for an applied molecular taxonomy of otters in Southeast Asia. Conserv Genet 9:1589–1604CrossRefGoogle Scholar
  36. Kruuk H (2006) Otters ecology, behaviour and conservation. Oxford University Press, OxfordGoogle Scholar
  37. Longmire JL, Maltbie M, Baker RJ (1997) Use of “lysis buffer” in DNA isolation and its implication for museum collections. Occasional Papers, Museum of Texas Tech University 163:1–4Google Scholar
  38. Macdonald SM, Mason CF (1994) Status and conservation needs of the otter (Lutra lutra) in the western Palaearctic. Nat Environ 67:1–54Google Scholar
  39. Madsen AB (1996) Otter (Lutra lutra) mortality in relation to traffic and experience with using stop-grids in Denmark. In: Proceedings of the Vth International Otter Colloquium. Habitat 6:237–241Google Scholar
  40. Moritz C (1994) Defining ‘evolutionarily significant units’ for conservation. Trends Ecol Evol 9:273–375CrossRefGoogle Scholar
  41. Mucci N, Pertoldi C, Madsen AB et al (1999) Extremely low mitochondrial DNA control-region sequence variation in the otter (Lutra lutra) population of Denmark. Hereditas 130:331–336CrossRefPubMedGoogle Scholar
  42. Musiani M, Leonard JA, Cluff HD et al (2007) Differentiation of tundra/taiga and boreal coniferous forest wolves: genetics, coat colour and association with migratory caribou. Mol Ecol 16:4149–4170CrossRefPubMedGoogle Scholar
  43. Paetkau D, Slade R, Burdens M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65CrossRefPubMedGoogle Scholar
  44. Peakall R, Smouse PE (2006) Genalex 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  45. Pérez-Haro M, Viñas J, Mañas F et al (2005) Genetic variability in the complete mitochondrial control-region of the Eurasian otter (Lutra lutra) in the Iberian Peninsula. Biol J Linn Soc 86:397–403CrossRefGoogle Scholar
  46. Pertoldi C, Hansen MM, Loeschcke V et al (2001) Genetic consequences of population decline in the European otter (Lutra lutra): an assessment of microsatellite DNA variation in Danish otters from 1883 to 1993. Proc R Soc Lond B Biol Sci 268:1775–1781CrossRefGoogle Scholar
  47. Prigioni C, Remonti L, Balestrieri A et al (2006) Estimation of European otter (Lutra lutra) population size by fecal DNA typing in southern Italy. J Mammal 87:855–858CrossRefGoogle Scholar
  48. Pritchard JK, Stephens M, Donnelly PJ (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  49. Randi E, Davoli F, Pierpaoli M et al (2003) Genetic structure in otter (Lutra lutra) populations in Europe: implications for conservation. Anim Conserv 6:1–10CrossRefGoogle Scholar
  50. Randi E, Mucci N, Arrendal J et al (2005) Assessing the patterns of genetic diversity in otter populations in Europe. In: European Otter Workshop, Padula (Salerno), Italy, 20–23 October 2005Google Scholar
  51. Reuther C (1994) European otter habitat network. In: Seminar on the conservation of the European otter (Lutra lutra), Environmental Encounters 24, Strasbourg, Leeuwarden, Council of EuropeGoogle Scholar
  52. Reuther C, Roy A (2001) Some results of the 1991 and 1999 otter (Lutra lutra) surveys in the River Ise catchment, Lower-Saxony, Germany. IUCN Otter Spec Group Bull 18:28–40Google Scholar
  53. Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138CrossRefGoogle Scholar
  54. Rozas J, Sanchez-DelBarrio JC et al (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  55. Ruiz-Olmo J, López-Martín JM, Palazón S (2001) The influence of fish abundance on the otter (Lutra lutra) populations in Iberian Mediterranean habitats. J Zool 254:325–336CrossRefGoogle Scholar
  56. Saavedra D, Sargatal J (1998) Reintroduction of the otter (Lutra lutra) in northeast Spain (Girona Province). Galemys 10:191–199Google Scholar
  57. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites. Application to human mitochondrial DNA. Genetics 152:1079–1089PubMedGoogle Scholar
  58. Sjöåsen T (1996) Survivorship of captive-bred and wild-caught reintroduced European otters Lutra lutra in Sweden. Biol Conserv 76:161–165CrossRefGoogle Scholar
  59. Sommer R, Benecke N (2004) Late- and Post-Glacial history of the Mustelidae in Europe. Mamm Rev 34:249–284CrossRefGoogle Scholar
  60. Sommer RS, Nadachowski A (2006) Glacial refugia of mammals in Europe: evidence from fossil records. Mamm Rev 36:251–265CrossRefGoogle Scholar
  61. Stanton DWG, Hobbs GI, Chadwick EA et al (2009) Mitochondrial genetic diversity and structure of the European otter (Lutra lutra) in Britain. Cons Genet 10:733–737CrossRefGoogle Scholar
  62. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  63. Van Ewijk KY, Knol AP, De Jong RCCM (1997) An otter PVA as a preparation of a reintroduction experiment in the Netherlands. Z Saugetier 62:238–242Google Scholar
  64. Wahlund S (1928) Zusammensetzung von Populationen und Korrelationserscheinungen vom Standpunkt der Vererbungslehre aus betrachtet. Hereditas 11:65–106CrossRefGoogle Scholar
  65. Wayre J (1991) The Otter Trust’s reintroduction programme using captive-bred otters. In: Reuther C, Rochert C, Hankensbiattel R (eds) Proceedings of international Otter Colloquium. Habitat 6:219–222Google Scholar
  66. Weber D, Weber JM, Müller HU (1991) Fischotter (Lutra lutra L.) in Schwarzwasser-sensegebiet; dokumentation eines gescheiterten Wiedereinbürgerungsversuches. [Otters in the Schwarzwasser-Sense-catchment; documentation of an unsuccessful re-introduction project.] Mitteilungen der Naturforschenden Gesellschaft in Bern. (In German with English summary)Google Scholar
  67. Wright S (1969) Evolution and the genetics of populations. Vol 2, the theory of gene frequencies. University of Chicago Press, ChicagoGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • Nadia Mucci
    • 1
  • Johanna Arrendal
    • 2
  • Hermann Ansorge
    • 3
  • Michael Bailey
    • 4
  • Michaela Bodner
    • 5
  • Miguel Delibes
    • 6
  • Ainhoa Ferrando
    • 7
  • Pascal Fournier
    • 8
  • Christine Fournier
    • 8
  • José A. Godoy
    • 6
  • Petra Hajkova
    • 9
  • Silke Hauer
    • 10
  • Thrine Moen Heggberget
    • 11
  • Dietrich Heidecke
    • 12
  • Harri Kirjavainen
    • 13
  • Hans-Heinrich Krueger
    • 14
  • Kirsti Kvaloy
    • 15
  • Lionel Lafontaine
    • 16
  • József Lanszki
    • 17
  • Charles Lemarchand
    • 18
  • Ulla-Maija Liukko
    • 19
  • Volker Loeschcke
    • 20
  • Gilbert Ludwig
    • 21
  • Aksel Bo Madsen
    • 22
  • Laurent Mercier
    • 23
  • Janis Ozolins
    • 24
  • Momir Paunovic
    • 25
  • Cino Pertoldi
    • 20
    • 26
  • Ana Piriz
    • 6
  • Claudio Prigioni
    • 27
  • Margarida Santos-Reis
    • 28
  • Teresa Sales Luis
    • 28
  • Torsten Stjernberg
    • 29
  • Hans Schmid
    • 30
  • Franz Suchentrunk
    • 31
  • Jens Teubner
    • 32
  • Risto Tornberg
    • 33
  • Olaf Zinke
    • 30
  • Ettore Randi
    • 1
  1. 1.Laboratory of GeneticsIstituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA)Ozzano EmiliaItaly
  2. 2.Department of Animal Ecology, Evolutionary Biology CentreUppsala UniversityUppsalaSweden
  3. 3.Senckenberg Museum of Natural History GoerlitzGoerlitzGermany
  4. 4.Department of ZoologyTrinity College Dublin, College GreenDublin 2Ireland
  5. 5.Stadtplatz 23SchremsAustria
  6. 6.Estación Biológica de DoñanaCSICSevillaSpain
  7. 7.Departament de Biologia Cellular, de Fisiologia i d’ImmunologiaUniversitat Autònoma de BarcelonaCerdanyola del VallèsSpain
  8. 8.Groupe de Recherche et d’Etude pour la Gestion de l’EnvironnementVillandrautFrance
  9. 9.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  10. 10.Institute of ZoologyMartin Luther University Halle (Saale)Halle (Saale)Germany
  11. 11.Norwegian Institute for Nature ResearchTrondheimNorway
  12. 12.Institute of Biology/ZoologyMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  13. 13.Department of BiologyUniversity of JoensuuJoensuuFinland
  14. 14.Aktion Fischotterschutz e. V, Otter-Zentrum, Sudendorfallee 1HankensbuttelGermany
  15. 15.Norwegian Institute for Nature ResearchTrondheimNorway
  16. 16.Réseau Loutre FrancophoneBP1LocquenoleFrance
  17. 17.Department of Nature ConservationUniversity of KaposvárKaposvarHungary
  18. 18.Ecole Nationale Vétérinaire de Lyon—UMR INRA ENVL 1233Marcy l’EtoileFrance
  19. 19.Finnish Environment InstituteHelsinkiFinland
  20. 20.Department of Biological Sciences, Ecology and GeneticsAarhus UniversityAarhus CDenmark
  21. 21.Department of Biological and Environmental ScienceUniversity of JyväskyläJyvaskylaFinland
  22. 22.Department of Wildlife Ecology and Biodiversity, National Environmental Research InstituteUniversity of AarhusKaloDenmark
  23. 23.Otter Reintroduction CentreHunawihrFrance
  24. 24.State Forest ServiceRigaLatvia
  25. 25.Institute for Biological ResearchBeogradSerbia and Montenegro
  26. 26.Mammal Research InstitutePolish Academy of SciencesBialowieżaPoland
  27. 27.Department of Animal BiologyPavia UniversityPaviaItaly
  28. 28.Centro de Biologia Ambiental/Departamento de Biologia Animal, Faculdade de CiênciasUniversidade de LisboaLisbonPortugal
  29. 29.Finnish Museum of Natural History, Zoological MuseumUniversity of Helsinki-FinlandHelsinkiFinland
  30. 30.Zurich ZooZurichSwitzerland
  31. 31.Research Institute of Wildlife EcologyUniversity of Veterinary Medicine ViennaViennaAustria
  32. 32.Landesumweltamt BrandenburgNaturschutzstation ZippelsfördeZippelsfordeGermany
  33. 33.Faculty of Science, Department of BiologyUniversity of OuluOuluFinland

Personalised recommendations