Conservation Genetics

, Volume 12, Issue 1, pp 41–50 | Cite as

Landscape genetics of the Alpine newt (Mesotriton alpestris) inferred from a strip-based approach

  • Guillaume Emaresi
  • Jérôme Pellet
  • Sylvain Dubey
  • Alexandre H. Hirzel
  • Luca Fumagalli
Research Article


Habitat destruction and fragmentation are known to strongly affect dispersal by altering the quality of the environment between populations. As a consequence, lower landscape connectivity is expected to enhance extinction risks through a decrease in gene flow and the resulting negative effects of genetic drift, accumulation of deleterious mutations and inbreeding depression. Such phenomena are particularly harmful for amphibian species, characterized by disjunct breeding habitats. The dispersal behaviour of amphibians being poorly understood, it is crucial to develop new tools, allowing us to determine the influence of landscape connectivity on the persistence of populations. In this study, we developed a new landscape genetics approach that aims at identifying land-uses affecting genetic differentiation, without a priori assumptions about associated ecological costs. We surveyed genetic variation at seven microsatellite loci for 19 Alpine newt (Mesotriton alpestris) populations in western Switzerland. Using strips of varying widths that define a dispersal corridor between pairs of populations, we were able to identify land-uses that act as dispersal barriers (i.e. urban areas) and corridors (i.e. forests). Our results suggest that habitat destruction and landscape fragmentation might in the near future affect common species such as M. alpestris. In addition, by identifying relevant landscape variables influencing population structure without unrealistic assumptions about dispersal, our method offers a simple and flexible tool of investigation as an alternative to least-cost models and other approaches.


Fragmentation Landscape genetics Anthropogenic land-uses Microsatellites Amphibians Dispersal 



We are grateful to T. Broquet, P. Fontanillas, J. Goudet, N. Perrin and two anonymous reviewers for their comments on earlier versions of this manuscript. We also thank the Conservation de la faune et de la nature in St-Sulpice (Switzerland) for capture authorisation.

Supplementary material

10592_2009_9985_MOESM1_ESM.pdf (277 kb)
(PDF 276 kb)


  1. Akaike H (1974) New look at statistical-model identification. IEEE Trans Automat Contr AC19:716–723CrossRefGoogle Scholar
  2. Anderson DR, Burnham KP, White GC (2001) Kullback-Leibler information in resolving natural resource conflicts when definitive data exist. Wildl Soc Bull 29:1260–1270Google Scholar
  3. Arens P, van der Sluis T, van’t Westende WPC, Vosman B, Vos CC, Smulders MJM (2007) Genetic population differentiation and connectivity among fragmented Moor frog (Rana arvalis) populations in The Netherlands. Landscape Ecol 22:1489–1500CrossRefGoogle Scholar
  4. Arnaud JF (2003) Metapopulation genetic structure and migration pathways in the land snail Helix aspersa: influence of landscape heterogeneity. Landscape Ecol 18:333–346CrossRefGoogle Scholar
  5. Blaustein AR, Wake DB, Sousa WP (1994) Amphibian declines—judging stability, persistence, and susceptibility of populations to local and global extinctions. Conserv Biol 8:60–71CrossRefGoogle Scholar
  6. Bockelmann AC, Reusch TBH, Bijlsma R, Bakker JP (2003) Habitat differentiation vs. isolation-by-distance: the genetic population structure of Elymus athericus in European salt marshes. Mol Ecol 12:505–515CrossRefPubMedGoogle Scholar
  7. Bossart JL, Prowell DP (1998) Genetic estimates of population structure and gene flow: limitations, lessons and new directions. Trends Ecol Evol 13:202–206CrossRefGoogle Scholar
  8. Broquet T, Berset-Braendli L, Emaresi G, Fumagalli L (2007) Buccal swabs allow efficient and reliable microsatellite genotyping in amphibians. Conserv Genet 8:509–511CrossRefGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and inference—a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  10. Carr LW, Fahrig L (2001) Effect of road traffic on two amphibian species of differing vagility. Conserv Biol 15:1071–1078CrossRefGoogle Scholar
  11. Castellano S, Balletto E (2002) Is the partial mantel test inadequate? Evolution 56:1871–1873PubMedGoogle Scholar
  12. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631CrossRefPubMedGoogle Scholar
  13. Cushman SA, McKelvey KS, Hayden J, Schwartz MK (2006) Gene flow in complex landscapes: testing multiple hypotheses with causal modeling. Am Nat 168:486–499CrossRefPubMedGoogle Scholar
  14. Eastman JR (2002) Idrisi 32.2. Clark University, Worcester.
  15. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Ann Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  16. Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF (1995) Effect of road traffic on amphibian density. Biol Conserv 73:177–182CrossRefGoogle Scholar
  17. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  18. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496CrossRefPubMedGoogle Scholar
  19. Garner TWJ, Schmidt BR, Hoeck P, Van Buskirk J (2003) Di- and tetranucleotide microsatellite markers for the Alpine newt (Triturus alpestris): characterization and cross-priming in five congeners. Mol Ecol Notes 3:186–188CrossRefGoogle Scholar
  20. Geffen E, Anderson MJ, Wayne RK (2004) Climate and habitat barriers to dispersal in the highly mobile grey wolf. Mol Ecol 13:2481–2490CrossRefPubMedGoogle Scholar
  21. Gill D (1978) The metapopulation ecology of the red-spotted newt, Notophthalmus viridescens (Rafinesque). Ecol Monogr 48:145–166CrossRefGoogle Scholar
  22. Goudet J (2001) Fstat (version 2.9.3): a program to estimate and test gene diversities and fixation indices. University of Lausanne. Available at:
  23. Goudet J, Raymond M, deMeeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedGoogle Scholar
  24. Grossenbacher K (1988) Atlas de distribution des amphibians de Suisse. Ligue Suisse pour la protection de la Nature, BaselGoogle Scholar
  25. Hanski I (1998) Metapopulation dynamics. Nature 396:41–49CrossRefGoogle Scholar
  26. Hanski I (1999) Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos 87:209–219CrossRefGoogle Scholar
  27. Hanski I, Gilpin M (1991) Metapopulation dynamics—brief history and conceptual domain. Biol J Linn Soc 42:3–16CrossRefGoogle Scholar
  28. Hanski I, Gilpin M (1997) Metapopulation biology: ecology, genetics and evolution. Academic Press, LondonGoogle Scholar
  29. Hitchings SP, Beebee TJC (1996) Persistence of British natterjack toad Bufo calamita Laurenti (Anura: Bufonidae) populations despite low genetic diversity. Biol J Linn Soc 57:69–80Google Scholar
  30. Jehle R, Sinsch U (2007) Wanderleistung und Orientierung von Amphibien: eine Übersicht. Zeitschrift für Feldherpetologie 14:137–152Google Scholar
  31. Jepsen JU, Baveco JM, Topping CJ, Verboom J, Vos CC (2005) Evaluating the effect of corridors and landscape heterogeneity on dispersal probability: a comparison of three spatially explicit modelling approaches. Ecol Modell 181:445–459CrossRefGoogle Scholar
  32. Johansson M, Primmer CR, Sahlsten J, Merila J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob Chang Biol 11:1664–1679CrossRefGoogle Scholar
  33. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  34. Keyghobadi N, Roland J, Strobeck C (1999) Influence of landscape on the population genetic structure of the alpine butterfly Parnassius smintheus (Papilionidae). Mol Ecol 8:1481–1495CrossRefPubMedGoogle Scholar
  35. Kindlmann P, Aviron S, Burel F (2005) When is landscape matrix important for determining animal fluxes between resource patches? In: 6th World Congress of the international-association-for-landscape-ecology (IALE), Darwin, AUSTRALIA, pp 150–158Google Scholar
  36. Levins R (1969) Some demographic and genetic consequences of environmental heterogeneity for biological control. Bull Entomol Soc Am 15:237–240Google Scholar
  37. MacKenzie DI, Nichols JD, Lachman GB, Droege S, Royle JA, Langtimm CA (2002) Estimating site occupancy rates when detection probabilities are less than one. Ecology 83:2248–2255CrossRefGoogle Scholar
  38. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics: combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197CrossRefGoogle Scholar
  39. Manly BGF (1997) Randomisation and Monte Carlo methods in biology, 2nd edn. Chapman and Hall, LondonGoogle Scholar
  40. Marsh DM, Milam GS, Gorham NR, Beckman NG (2005) Forest roads as partial barriers to terrestrial salamander movement. Conserv Biol 19:2004–2008CrossRefGoogle Scholar
  41. Meyer AH, Schmidt BR, Grossenbacher K (1998) Analysis of three amphibian populations with quarter-century long time-series. Proc R Soc Lond B Biol Sci 265:523–528CrossRefGoogle Scholar
  42. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  43. Opdam P (1990) Dispersal in fragmented populations: the key to survival. In: Bunce RGH, Howard DC (eds) Species dispersal in agricultural habitats. Belhaven Press, London, pp 3–17Google Scholar
  44. Opdam P, Van Apeldoorn R, Schotmann R, Kalkhoven J (1993) Population responses to landscape fragmentation. In: Vos CC, Opdam P (eds) Landscape ecology of a stressed environment. Chapman and Hall, London, pp 147–171Google Scholar
  45. Pabijan M, Babik W (2006) Genetic structure in northeastern populations of the Alpine newt (Triturus alpestris): evidence for post-Pleistocene differentiation. Mol Ecol 15:2397–2407CrossRefPubMedGoogle Scholar
  46. Pellet J, Guisan A, Perrin N (2004) A concentric analysis of the impact of urbanization on the threatened European tree frog in an agricultural landscape. Conserv Biol 18:1599–1606CrossRefGoogle Scholar
  47. Perret N, Pradel R, Miaud C, Grolet O, Joly P (2003) Transience, dispersal and survival rates in newt patchy populations. J Anim Ecol 72:567–575CrossRefGoogle Scholar
  48. Pidancier N, Miquel C, Miaud C (2003) Buccal swabs as a non-destructive tissue sampling method for DNA analysis in amphibians. Herpetol J 13:175–178Google Scholar
  49. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. Google Scholar
  50. Raufaste N, Rousset F (2001) Are partial mantel tests adequate? Evolution 55:1703–1705PubMedGoogle Scholar
  51. Ricketts TH (2001) The matrix matters: Effective isolation in fragmented landscapes. Am Nat 158:87–99CrossRefPubMedGoogle Scholar
  52. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  53. Rousset F (2002) Partial mantel tests: reply to Castellano and Balletto. Evolution 56:1874–1875Google Scholar
  54. Semlitsch RD (2002) Critical elements for biologically based recovery plans of aquatic-breeding amphibians. Conserv Biol 16:619–629CrossRefGoogle Scholar
  55. Semlitsch RD (2003) Conservation of pond-breeding amphibians. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Institution, Washington, DC, pp 8–23Google Scholar
  56. Sinsch U (1990) Migration and orientation in anuran amphibians. In: International symposium on homing in animals. Rome, Italy, pp 65–79Google Scholar
  57. Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 236:787–792CrossRefPubMedGoogle Scholar
  58. Smith MA, Green DM (2005) Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28:110–128CrossRefGoogle Scholar
  59. Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564CrossRefPubMedGoogle Scholar
  60. Stevens VM, Verkenne C, Vandewoestijne S, Wesselingh RA, Baguette M (2006) Gene flow and functional connectivity in the natterjack toad. Mol Ecol 15:2333–2344CrossRefPubMedGoogle Scholar
  61. Swisstopo (2003) Vector25. Office Fédéral de la Topographie, BernGoogle Scholar
  62. Team RDC (2005) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  63. Trenham PC, Koenig WD, Mossman MJ, Stark SL, Jagger LA (2003) Regional dynamics of wetland-breeding frogs and toads: Turnover and synchrony. Ecol Appl 13:1522–1532CrossRefGoogle Scholar
  64. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. Google Scholar
  65. Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608CrossRefPubMedGoogle Scholar
  66. Waldick RC, Freedman B, Wassersug RJ (1999) The consequences for amphibians of the conversion of natural, mixed-species forests to conifer plantations in southern New Brunswick. Can Field-Nat 113:408–418Google Scholar
  67. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of populations structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  68. Whitlock MC, McCauley DE (1999) Indirect measures of gene flow and migration: FST not equal 1/(4Nm + 1). Heredity 82:117–125CrossRefPubMedGoogle Scholar
  69. Wiens JA (1997) Metapopulation dynamics and landscape ecology. In: Hanski I, Gilpin M (eds) Metapopulation biology. Academic Press, San Diego, pp 43–68CrossRefGoogle Scholar
  70. Wiens JA, Stenseth NC, Vanhorne B, Ims RA (1993) Ecological mechanisms and landscape ecology. Oikos 66:369–380CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Guillaume Emaresi
    • 1
  • Jérôme Pellet
    • 2
    • 3
  • Sylvain Dubey
    • 4
  • Alexandre H. Hirzel
    • 1
  • Luca Fumagalli
    • 1
  1. 1.Department of Ecology and Evolution, Laboratory for Conservation Biology, BiophoreUniversity of LausanneLausanneSwitzerland
  2. 2.Oron-la-VilleSwitzerland
  3. 3.Division of Conservation Biology, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  4. 4.School of Biological SciencesUniversity of SydneySydneyAustralia

Personalised recommendations