Conservation Genetics

, Volume 12, Issue 1, pp 15–29 | Cite as

Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes

  • Holger Wernsdörfer
  • Henri Caron
  • Sophie Gerber
  • Guillaume Cornu
  • Vivien Rossi
  • Frédéric Mortier
  • Sylvie Gourlet-Fleury
Research Article

Abstract

Determining how tropical tree populations subject to selective felling (logging) pressure may be conserved is a crucial issue for forest management and studying this issue requires a comprehensive understanding of the relationships between population demography and gene flow. We used a simulation model, SELVA, to study (1) the relative impact of demographic factors (juvenile mortality, felling regime) and genetic factors (selfing, number and location of fathers, mating success) on long-term genetic diversity; and (2) the impact of different felling regimes on population size versus genetic diversity. Impact was measured by means of model sensitivity analyses. Juvenile mortality had the highest impact on the number of alleles and genotypes, and on the genetic distance between the original and final populations. Selfing had the greatest impact on observed heterozygote frequency and fixation index. Other factors and interactions had only minor effects. Overall, felling had a greater impact on population size than on genetic diversity. Interestingly, populations under relatively low felling pressure even had a somewhat lower fixation index than undisturbed populations (no felling). We conclude that demographic processes such as juvenile mortality should be modelled thoroughly to obtain reliable long-term predictions of genetic diversity. Mortality in selfed and outcrossed progenies should be modelled explicitly by taking inbreeding depression into account. The modelling of selfing based on population rate appeared to be oversimplifying and should account for inter-tree variation. Forest management should pay particular attention to the regeneration capacities of felled species.

Keywords

Genetic diversity Gene flow Population dynamics Simulation model Conservation Forest management 

Notes

Acknowledgements

We are grateful to Sylvie Oddou-Muratorio of INRA (French National Institute for Agricultural Research) Avignon and to Ivan Scotti of INRA Kourou (French Guiana) for valuable discussions on the demography and gene flow of forest tree species. Moreover, we thank two anonymous reviewers for constructive and helpful comments on an earlier version of the manuscript. The work was funded by a joint post-doctoral fellowship from CIRAD (French Agricultural Research Centre for International Development) and INRA.

References

  1. André T, Lemes MR, Grogan J et al (2008) Post-logging loss of genetic diversity in a mahogany (Swietenia macrophylla King, Meliaceae) population in Brazilian Amazonia. For Ecol Manag 255:340–345CrossRefGoogle Scholar
  2. Asner GP, Knapp DE, Broadbent EN et al (2005) Selective logging in the Brazilian Amazon. Science 310:480–482CrossRefPubMedGoogle Scholar
  3. Caron H, Dutech C, Bandou E (1998) Variations spatiotemporelles du régime de reproduction de Dicorynia guianensis Amshoff (Caesalpiniaceae) en forêt guyanaise. Genet Sel Evol 30(Suppl 1):S153–S166CrossRefGoogle Scholar
  4. Caron H, Dutech C, Bandou E (2004) Reproductive phenology and mating system of six tree species in Paracou stands. In: Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a Neotropical Rainforest. Elsevier, Paris, pp 149–159Google Scholar
  5. Cloutier D, Kanashiro M, Ciampi AY et al (2007) Impact of selective logging on inbreeding and gene dispersal in an Amazonian tree population of Carapa guianensis Aubl. Mol Ecol 16:797–809CrossRefPubMedGoogle Scholar
  6. Cornelius JP, Navarro CM, Wightman KE et al (2005) Is mahogany dysgenically selected? Environ Conserv 32:129–139CrossRefGoogle Scholar
  7. de Coligny F (2007) Efficient building of forestry modelling software with the Capsis methodology. In: Fourcaud T, Zhang XP (eds) Plant growth modeling and applications. Proceedings of PMA06. IEEE Computer Society, Los Alamitos, California, pp 216–222Google Scholar
  8. de Lacerda AEB, Kanashiro M, Sebbenn AM (2008) Effects of reduced impact logging on genetic diversity and spatial genetic structure of a Hymenaea courbaril population in the Brazilian Amazon Forest. For Ecol Manag 255:1034–1043CrossRefGoogle Scholar
  9. Degen B, Roubik DW (2004) Effects of animal pollination on pollen dispersal, selfing and effective population size of tropical trees: a simulation study. Biotropica 36:165–179Google Scholar
  10. Degen B, Gregorius HR, Scholz F (1996) ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genet 45:323–329Google Scholar
  11. Degen B, Blanc L, Caron H et al (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401CrossRefGoogle Scholar
  12. Dessard H, Picard N, Pélissier R et al (2004) Spatial patterns of the most abundant tree species. In: Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a Neotropical Rainforest. Elsevier, Paris, pp 177–190Google Scholar
  13. Dreyfus P, Pichot C, de Coligny F et al (2005) Couplage de modèles de flux de gènes et de modèles de dynamique forestière. Actes BRG 5:231–250Google Scholar
  14. Finkeldey R, Ziehe M (2004) Genetic implications of silvicultural regimes. For Ecol Manag 197:231–244CrossRefGoogle Scholar
  15. Gillies ACM, Navarro C, Lowe AJ et al (1999) Genetic diversity in Mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs. Heredity 83:722–732CrossRefPubMedGoogle Scholar
  16. Gourlet-Fleury S (1997) Modélisation individuelle spatialement explicite de la dynamique d’un peuplement de forêt dense tropicale humide (dispositif de Paracou – Guyane française). Doctoral Thesis, Université Lyon 1, Villeurbanne, FranceGoogle Scholar
  17. Gourlet-Fleury S, Houllier F (2000) Modelling diameter increment in a lowland evergreen rain forest in French Guiana. For Ecol Manag 131:269–289CrossRefGoogle Scholar
  18. Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) (2004a) Ecology and management of a Neotropical Rainforest. Elsevier, ParisGoogle Scholar
  19. Gourlet-Fleury S, Ferry B, Molino JF et al (2004b) Experimental plots: key features. In: Gourlet-Fleury S, Guehl J-M, Laroussinie O (eds) Ecology and management of a Neotropical Rainforest. Elsevier, Paris, pp 3–30Google Scholar
  20. Gourlet-Fleury S, Cornu G, Jésel S et al (2005) Using models to predict recovery and assess tree species vulnerability in logged tropical forests: a case study from French Guiana. For Ecol Manag 209:69–86CrossRefGoogle Scholar
  21. Hufford KM, Hamrick JL (2003) Viability selection at three early life stages of the tropical tree, Platypodium elegans (Fabaceae, Papilionoideae). Evolution 57:518–526PubMedGoogle Scholar
  22. Jennings SB, Brown ND, Boshier DH et al (2001) Ecology provides a pragmatic solution to the maintenance of genetic diversity in sustainably managed tropical rainforest. For Ecol Manag 154:1–10CrossRefGoogle Scholar
  23. Jésel S (2005) Ecologie et dynamique de la régénération de Dicorynia guianensis (Caesalpiniaceae) dans une forêt guyanaise. Doctoral Thesis, INA P-G, Paris, FranceGoogle Scholar
  24. Latouche-Hallé C, Ramboer A, Bandou E et al (2002) Isolation and characterization of microsatellite markers in the tropical tree species Dicorynia guianensis (Caesalpinaceae). Mol Ecol Notes 2:228–230CrossRefGoogle Scholar
  25. Latouche-Hallé C, Ramboer A, Bandou E et al (2003) Nuclear and chloroplast genetic structure indicate fine-scale spatial dynamics in a neotropical tree population. Heredity 91:181–190CrossRefPubMedGoogle Scholar
  26. Latouche-Hallé C, Ramboer A, Bandou E et al (2004) Long-distance pollen flow and tolerance to selfing in a neotropical tree species. Mol Ecol 13:1055–1064CrossRefPubMedGoogle Scholar
  27. Loubry D (1993) Les paradoxes de l’Angélique (Dicorynia guianensis Amshoff): dissémination et parasitisme des graines avant dispersion chez un arbre anémochore de forêt guyanaise. Rev Ecol (Terre Vie) 48:353–363Google Scholar
  28. Lourmas M, Kjellberg F, Dessard H et al (2007) Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum. Heredity 99:151–160CrossRefPubMedGoogle Scholar
  29. Lowe AJ, Boshier D, Ward M et al (2005) Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 95:255–273CrossRefPubMedGoogle Scholar
  30. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292CrossRefGoogle Scholar
  31. Neuenschwander S, Hospital F, Guillaume F et al (2008) quantiNemo: an individual-based program to simulate quantitative traits with explicit genetic architecture in a dynamic metapopulation. Bioinformatics 24:1552–1553CrossRefPubMedGoogle Scholar
  32. Oostermeijer JGB, Luijten SH, den Nijs JCM (2003) Integrating demographic and genetic approaches in plant conservation. Biol Conserv 113:389–398CrossRefGoogle Scholar
  33. Pfrender ME, Spitze K, Hicks J et al (2000) Lack of concordance between genetic diversity estimates at the molecular and quantitative trait levels. Conserv Genet 1:263–269CrossRefGoogle Scholar
  34. Phillips PD, Thompson IS, Silva JNM et al (2004) Scaling up models of tree competition for tropical forest population genetics simulation. Ecol Model 180:419–434CrossRefGoogle Scholar
  35. Reed DH, Frankham R (2001) How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution 55:1095–1103PubMedGoogle Scholar
  36. Saltelli A, Tarantola S, Campolongo F et al (2004) Sensitivity analysis in practice. Wiley, ChichesterGoogle Scholar
  37. Scofield DG, Schultz ST (2006) Mitosis, stature and evolution of plant mating systems: low-Φ and high-Φ plants. Proc R Soc B 273:275–282CrossRefPubMedGoogle Scholar
  38. Sebbenn AM, Degen B, Azevedo VCR et al (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manag 254:335–349CrossRefGoogle Scholar
  39. Silva MB, Kanashiro M, Ciampi AY et al (2008) Genetic effects of selective logging and pollen gene flow in a low-density population of the dioecious tropical tree Bagassa guianensis in the Brazilian Amazon. For Ecol Manag 255:1548–1558CrossRefGoogle Scholar
  40. van Gardingen PR, Valle D, Thompson I (2006) Evaluation of yield regulation options for primary forest in Tapajós National Forest, Brazil. For Ecol Manag 231:184–195CrossRefGoogle Scholar
  41. Ward M, Dick CW, Gribel R et al (2005) To self, or not to self…a review of outcrossing and pollen-mediated gene flow in neotropical trees. Heredity 95:246–254CrossRefPubMedGoogle Scholar
  42. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  43. Wernsdörfer H, Rossi V, Cornu G et al (2008) Impact of uncertainty in tree mortality on the predictions of a tropical forest dynamics model. Ecol Model 218:290–306CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Holger Wernsdörfer
    • 1
    • 2
    • 3
  • Henri Caron
    • 4
    • 5
  • Sophie Gerber
    • 4
    • 5
  • Guillaume Cornu
    • 1
  • Vivien Rossi
    • 1
  • Frédéric Mortier
    • 6
  • Sylvie Gourlet-Fleury
    • 1
  1. 1.CIRAD, UR Dynamique des Forets NaturellesMontpellier Cedex 5France
  2. 2.INRA, UMR1092, Laboratoire d Etude des Ressources Foret Bois (LERFoB)ChampenouxFrance
  3. 3.AgroParisTech, UMR1092, Laboratoire d Etude des Ressources Foret Bois (LERFoB)NancyFrance
  4. 4.INRA, UMR 1202 BIOGECOCestasFrance
  5. 5.Université de Bordeaux, UMR 1202 BIOGECOCestasFrance
  6. 6.CIRAD, UR Diversité Génétique et Amélioration des Espèces ForestièresMontpellier Cedex 5France

Personalised recommendations