Conservation Genetics

, Volume 12, Issue 1, pp 1–13 | Cite as

Genetic assessment, illegal trafficking and management of the Mediterranean spur-thighed tortoise in Southern Spain and Northern Africa

  • María SalinasEmail author
  • Laura Altet
  • Cristina Clavel
  • Ramón Miguel Almela
  • Alejandro Bayón
  • Isabel Burguete
  • Armand Sánchez
Research Article


Wild populations of many species are declining as a result of habitat destruction and climate change but also through the over-collection for wild meat and the pet trade. With a long history of trade around the Mediterranean, populations of the spur-thighed tortoise (Testudo graeca graeca) have become highly disturbed. In this study we utilise a molecular approach to investigate the diversity, population admixture and structure of T. g. graeca populations in northern Africa and southern Spain, as well as to obtain an insight into the origin of newly established populations in the south of Europe. We infer this from the sequencing of two partial regions of the mitochondria (12s rRNA + cyt b) and genotyping at 16 microsatellite markers in 448 tortoises. Our results are consistent with the hypothesis that Spanish populations were founded from North Africa, the consequence of multiple introductions or exchanges in genetic material as a result of trans-oceanic dispersal. Despite the trade of individuals between both sides of the Gibraltar Strait, our analysis of population structure showed clear differences between both the African and European populations, suggesting an incipient evolutionary lineage in southeast of Spain. As such, these populations possess unique genetic identities and should be treated as different management units. Surprisingly, the genetic data identified a great deal of diversity contained within pet (captive) stock and also allowed us to infer hybrids among individuals with another species of terrestrial tortoise from northern Spain (T. hermanni hermanni). Additionally, our results provide insight into the local movement and trade of individuals that has occurred around the Mediterranean basin (between northern Africa and southern Spain) and as such provides guidance for the effective management of T. g. graeca captive stock and the illegal trafficking.


Endangered species Conservation Illegal movement Species management plan Testudinidae Testudo graeca 



The authors gratefully acknowledge to Fundación Global Nature (Murcia Region, Spain); the Wildlife Rehabilitation Center “El Valle” (Murcia Region, Spain); Marcos Fernández (Wildlife Rehabilitation Center Santa Faz, Alicante, Spain) and Albert Martinez-Silvestre (CRARC, Barcelona, Spain). Thanks also to Peter Spencer for his revisions of the manuscript and referees for their comments and suggestions that helped to improve the previous manuscript. The financial support was provided by both Fundación Séneca, Spain (Proyect 00655/PI/04) and by MEC, Spain (Grant AP-2004-4048).


  1. Alvarez Y, Mateo JA, Andreu AC, Diaz-Paniagua C, Diez A, Bautista JM (2000) Mitochondrial DNA haplotyping of Testudo graeca on both continental sides of the straits of Gibraltar. J Hered 91:39–41CrossRefPubMedGoogle Scholar
  2. Andreu AC, López-Jurado LF (1998) Los reptiles ibéricos: género Testudo. In: Ramos MA et al (eds) Fauna Ibérica. Reptiles. Museo Nacional de Ciencias Naturales, CSIC, MadridGoogle Scholar
  3. Asian Turtle Trade (2000) Proceedings of a workshop on conservation and trade of freshwater turtles and tortoises in Asia. In: van Dijk PP, Stuart BL, Rhodin AGJ (eds) Chelonian Research Monographs No. 2Google Scholar
  4. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, CambridgeGoogle Scholar
  5. Avise JC, Bowen BW, Lamb T, Meylan AB, Bermingham E (1992) Mitochondrial DNA evolution at a turtles’s pace: evidence for low genetic variability and reduced microevolutionary rate in the Testudines. Mol Biol Evol 9:457–473PubMedGoogle Scholar
  6. Bailón S (2001) Revisión de la asignación a Testudo cf. graeca del yacimiento del Pleistoceno superior de Cueva Horá (Darro, España). Rev Esp Herpetol 15:61–65Google Scholar
  7. Bandelt HJ (1999) Combination of data in phylogenetic analysis. Plant Syst Evol 9:355–361Google Scholar
  8. Benson RH, Rakic-El Beid K, Bonaduce G (1991) An important current reversal, influx in the Rifian corridor, Morroco, at the Tortonian-Messinian boundary: the end of the Tethys ocean. Paleoceanography 6:164–172CrossRefGoogle Scholar
  9. Bowcock AM, Ruiz-Linares A, Tomfohrde J, Minch E, Kidd JR, Cavalli-Sforza LL (1994) High resolution of human evolutionary trees with polymorphic microsatellite. Nature 368:455–457CrossRefPubMedGoogle Scholar
  10. Busack SD (1986) Biogeographic analysis of the herpetofauna separated by the formation of the Strait of Gibraltar. Natl Geogr Res 2:339–348Google Scholar
  11. Chkhikvadze VM (1983) Iskopaemye cherepakhi Kavkaza i Severnogo Prichernomorya. Metsniereba, TbilisiGoogle Scholar
  12. Chkhikvadze VM (1989) Neogenovye cherepakhi SSSR. Metsniereba, TbilisiGoogle Scholar
  13. Ciofi C, Milinkovitch MC, Gibbs JP, Caccoce A, Powell JR (2002) Microsatellite analysis of genetic divergence among populations of Giant Galápagos Tortoises. Mol Ecol 11:2265–2283CrossRefPubMedGoogle Scholar
  14. Connor M (1989) Molecular biology and the turtle: the desert tortoise and its relatives. Tortuga Gaz 25:10–11Google Scholar
  15. Cornuet JM, Luikart G (1996) Description and power analysis of two test for detecting recent population bottleneck from allele frequency data. Genetics 1444:2001–2014Google Scholar
  16. Crandall KA, Bininda-Edmonds O, Mace G, Wayne RK (2000) Considering evolutionary processes in conservation biology: an alternative to “evolutionary significants units”. Trends Ecol Evol 15:290–295CrossRefPubMedGoogle Scholar
  17. Danilov IG (2005) Die fossilen Schildkröten Europas. In: Fritz U (ed) Handbuch der Reptilien und Amphibien Europas. Band 3/IIIB: Schildkröten (Testudines) II. Aula-Verlag, WiebelsheimGoogle Scholar
  18. Dupre A (2002) Situation de Testudo graeca au Maghreb. Chelonii 3:300–301Google Scholar
  19. Edwards T, Goldberg CS, Kaplan ME, Schwalbe CR, Swann DE (2003) PCR primers for microsatellite loci in the desert tortoise (Gopherus agassizii, Testudinidae). Mol Ecol Notes 3:589–591CrossRefGoogle Scholar
  20. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  21. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  22. Ferrández M (2003) Illegal trade of Greek tortoise (Testudo graeca) coming from Algeria admitted in the Wildlife Preservation Centre Santa Faz Alicante (Spain). Presented at the second international congress on chelonian conservation, Dakar, Senegal, 18–22 June 2003Google Scholar
  23. Forlani A, Crestanello B, Mantovani S, Livoreil B, Zane L, Bertorelle G, Congiu L (2005) Identification and characterization of microsatellite markers in Hermann’s tortoise (Testudo hermanni, Testudinidae). Mol Ecol Notes 5:228–230CrossRefGoogle Scholar
  24. Fritz U, Hundsdörfer AK, Široký P, Auer M, Kami H, Lehmann J, Mazanaeva LF, Türkozan O, Wink M (2007) Phenotipic plasticity leads to incongruence between morphology-based taxonomy and the genenetic differentiation in western Paleartic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphib-Reptil 28:97–121CrossRefGoogle Scholar
  25. Fritz U, Harris DJ, Fahd S, Rouag R, Graciá E, Giménez A, Siroky P, Kalboussi M, Jdeidi TB, Hundsdörfer AK (2009) Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: old complex divergence in North Africa and recent arrival in Europe. Amphib-Reptil 30:63–80CrossRefGoogle Scholar
  26. González J (1993) Rèunion Island. Still a land tortoises. Chelonian Conserv Biol 1:51–52Google Scholar
  27. Goudet J (1995) FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  28. Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66:591–600PubMedGoogle Scholar
  29. Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  30. Kabisch K (2001) Bastardisierung von Testudo horsfieldii (GRAY, 1844) und Testudo graeca ibera (PALLAS, 1814). Sauria 23:7–11Google Scholar
  31. King TL, Julian SE (2004) Conservation of microsatellite DNA flanking sequence across 13 Emyidid genera assayed with novel bog turtle (Glytemys muhlenbergii) loci. Conserv Genet 5:719–725CrossRefGoogle Scholar
  32. Kirsche W (1984) Bastardierung von Testudo horsfieldii (GRAY, 1844) und Testudo h. hermanni (GMELIN). Amphib-Reptil 5:311–322CrossRefGoogle Scholar
  33. Klemens MW, Thorbjarnarson JB (1995) Reptiles as a food resource. Biodivers Conserv 4:218–298CrossRefGoogle Scholar
  34. Kocher TD, Thomas WK, Meyer A, Edwards SV, Pääbo S, Villablanca FX (1989) Dynamics of mitochondrial DNA evolution in animals: Amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200CrossRefPubMedGoogle Scholar
  35. Kumar S, Tamura K, Jakobsen IB, Nei M (2004) MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinformatics 5:150–163CrossRefPubMedGoogle Scholar
  36. Lambert MRK (1979) Trade and the mediterranean tortoises. Oryx 15:81–82CrossRefGoogle Scholar
  37. Lapparent de Broin F (2000) African chelonians from the Jurassic to the present: a preliminary catalog of the African fossil chelonians. Palaeontol Afr 36:43–82Google Scholar
  38. Manel S, Berthier P, Luikart G (2002) Detecting poaching: identifying the origin of individuals using Bayesian assigment tests and multi-locus genotypes. Conserv Biol 16:650–659CrossRefGoogle Scholar
  39. Minch E, Ruiz-Linares A, Goldstein D, Feldman M, Cavalli-Sforza LL (1997) Microsat v.1.5d: a computer program for calculating various statistics on microsatellite allele dataGoogle Scholar
  40. Moon JC, McCoy ED, Mushinsky HR, KarlMultiple SA (2006) Multiple paternity and breeding system in the gopher tortoise, Gopherus polyphemus. J Hered 97:150–157CrossRefPubMedGoogle Scholar
  41. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  42. Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  43. Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583PubMedGoogle Scholar
  44. Parham JF, Macey JR, Papenfuss TJ, Feldman CR, Türkozan O, Polymeni R, Boore J (2006) The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens: with coments on mitochondrial genomic features, phylogenetic, and paleogeography. Mol Phylogenet Evol 38:50–64CrossRefPubMedGoogle Scholar
  45. Pariset L, Cappuccio I, Ajmone Marsan P, Dunner S, Luikart G, Obexer-Ruff G, Peter C, Marletta D, Pilla F, Valentini A (2006) Assessment of population structure by single nucleotide polymorphisms (SNPs) in goat breeds. J Chromatogr B 833:117–120CrossRefGoogle Scholar
  46. Pérez I, Gimenez A, Sanchez-Zapata JA, Anadón JD, Martínez M, Esteve MA (2004) Non-commercial of spur-thighed tortoises (Testudo graeca graeca): a cultutal problem in Southeast Spain. Biol Conserv 118:175–181CrossRefGoogle Scholar
  47. Pleguezuelos JM, Márquez R, Lizana M (eds) (2002) Atlas y libro rojo de los anfibios y reptiles de España. Dirección General de la Conservación de la Naturaleza-Asociación Herpetológica Española, 2nd edn. Spain, MadridGoogle Scholar
  48. Posada D, Buckley T (2004) Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests. Soc Syst Biol 53:793–808CrossRefGoogle Scholar
  49. Posada D, Crandall K (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 1:817–818CrossRefGoogle Scholar
  50. Posada D, Crandall K (2001) Performance of methods for detecting recombination from DNA sequences: computer simulations. Proc Natl Acad Sci USA 98:13757–13762CrossRefPubMedGoogle Scholar
  51. Pritchard JK, Stephens M, Donelly P (2000) Inference of population structure from multilocus genotypes data. Genetics 155:945–949PubMedGoogle Scholar
  52. Ramos-Onsins S, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100PubMedGoogle Scholar
  53. Raymond M, Rousset F (1995) GENEPOP: population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  54. Reed J, Tollit D, Thompson P, Amos W (1997) Molecular scatology: the use of molecular genetic analysis to assign species, sex and individual identity to seal faeces. Mol Ecol 6:225–234CrossRefPubMedGoogle Scholar
  55. Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569PubMedGoogle Scholar
  56. Roques S, Díaz-Paniagua C, Andreu AC (2004) Microsatellite markers reveal multiple paternity and sperm storage in the Mediterrranean spur-thighed tortoise, Testudo graeca. Can J Zool 82:153–159CrossRefGoogle Scholar
  57. Rozas J, Sanchez-Delbarrio JC, Messenger X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and others methods. Bioinformatics 19:2496–2497CrossRefPubMedGoogle Scholar
  58. Saitou N, Nei M (1987) The Neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedGoogle Scholar
  59. Schwartz T, Osentoski M, Lamb T, Karl A (2003) Microsatellite loci for the North American tortoises (genus Gopherus) and their applicability to other turtle species. Mol Ecol Notes 3:283–286CrossRefGoogle Scholar
  60. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedGoogle Scholar
  61. Swofford DL (2002) PAUP* Phylogenetic analysis using parsomony (*and Other Methods), Version 4. Sinauer Associates, Sunderland, MAGoogle Scholar
  62. Takahata N (1987) On the overdispersed molecular clock. Genetics 116:169–179PubMedGoogle Scholar
  63. Thorbjarnarson JB, Lagueux CJ, Bolze D, Klemens MW, Meylan AB (2000) Human use of turtles: a worldwide perspective. In: Klemens MW (ed) Turtle conservation. Smithsonian Institution Press, Washington, pp 33–88Google Scholar
  64. Turtle Conservation Fundation (2002) A global action plan for conservation of tortoises and freshwater turtles. Strategy and funding prospectus 2002–2007. Washington, DC: Conservation International and Chelonian Research Foundation, 30 ppGoogle Scholar
  65. van der Kuyl AC, Ballasina D, Dekker J, Maas J, Willensem RE, Goudsmit J (2002) Phylogenetic relationships among the species of the Genus Testudo (Testudines: Testudinidae) inferred from mitochondrial 12s rRNA gene sequences. Mol Phylogenet Evol 22:174–183CrossRefPubMedGoogle Scholar
  66. van der Kuyl AC, Ballasina D, Zorgdrager F (2005) Mitochondrial haplotype diversity in the tortoises species Testudo graeca from North Africa and the middle East. BMC Evol Biol 5:29–37CrossRefPubMedGoogle Scholar
  67. Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184CrossRefGoogle Scholar
  68. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  69. Woodbury AM (1952) Hybrids of Gopherus berlandieri and G. agassizii. Herpetologica 8:33–36Google Scholar
  70. Zhang D, Hewitt G (2003) Nuclear DNA analyses in genetic studies of populations: practice, problems and prospects. Mol Ecol 12:563–584CrossRefPubMedGoogle Scholar
  71. Znari M, Germano DJ, Mace JC (2005) Growth and population structure of the Moorish Tortoise (Testudo graeca graeca) in Westcentral Morocco: possible effects of over-collecting for the tourist trade. J Arid Environ 62:55–74CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • María Salinas
    • 1
    Email author
  • Laura Altet
    • 1
  • Cristina Clavel
    • 3
  • Ramón Miguel Almela
    • 3
  • Alejandro Bayón
    • 3
  • Isabel Burguete
    • 2
  • Armand Sánchez
    • 1
  1. 1.Departament de Ciència Animal i dels Aliments, Facultat de VeterinàriaUniversitat Autònoma de BarcelonaBellaterra, BarcelonaSpain
  2. 2.Dpto de Producción Animal, Facultad de VeterinariaUniversidad de MurciaMurciaSpain
  3. 3.Dpto de Medicina y Cirugía Animal, Facultad de VeterinariaUniversidad de MurciaMurciaSpain

Personalised recommendations