Conservation Genetics

, Volume 11, Issue 4, pp 1265–1271 | Cite as

High population differentiation in the rock-dwelling land snail (Trochulus caelatus) endemic to the Swiss Jura Mountains

  • Sylvain Ursenbacher
  • Caren Alvarez
  • Georg F. J. Armbruster
  • Bruno Baur
Research Article

Abstract

Understanding patterns of genetic structure is fundamental for developing successful management programmes for isolated populations of threatened species. Trochulus caelatus is a small terrestrial snail endemic to calcareous rock cliffs in the Northwestern Swiss Jura Mountains. Eight microsatellite loci were used to assess the effect of habitat isolation on genetic population structure and gene flow among nine populations occurring on distinct cliffs. We found a high genetic differentiation among populations (mean FST = 0.254) indicating that the populations are strongly isolated. Both allelic richness and effective population size were positively correlated with the size of the cliffs. Our findings support the hypothesis that T. caelatus survived on ice-free cliffs during the Pleistocene glacier advancements from the Alps. Due to the establishment of beech and pine forest under recent, temperate climate conditions, dispersal between cliffs is no longer possible for rock-dwelling snails such as T. caelatus. Our results provide basic data for developing a conservation action plan for this endangered gastropod species.

Keywords

Helicoidea Land snails Microsatellites Population genetic structure Trochulus caelatus 

References

  1. Akçakaya HR, Baur B (1996) Effects of population subdivision and catastrophes on the persistence of a land snail metapopulation. Oecologia (Berl.) 105:475–483CrossRefGoogle Scholar
  2. Alvarez C (2005) Habitat requirements and population differentiation in the land snail Trichia caelata endemic to the Swiss Jura Mountains. Master thesis, University of BaselGoogle Scholar
  3. Anderson FE (2007) Population genetics of the carinate pillsnail, Euchemotrema hubrichti: genetic structure on a small spatial scale. Conserv Genet 8:965–975CrossRefGoogle Scholar
  4. Armbruster GFJ, Koller B, Baur B (2005) Foot mucus and periostracum fraction as non-destructive source of DNA in the land snail Arianta arbustorum, and the development of new microsatellite loci. Conserv Genet 6:313–316CrossRefGoogle Scholar
  5. Armbruster GFJ, Hofer M, Baur B (2007a) Effect of cliff connectivity on the genetic population structure of a rock-dwelling land snail species with frequent self-fertilization. Biochem Syst Ecol 35:325–333CrossRefGoogle Scholar
  6. Armbruster GFJ, Alvarez C, Pesaro M, Baur B (2007b) Polymorphic microsatellite DNA markers in the endangered land snail, Trichia caelata (Gastropoda, Stylommatophora). Mol Ecol Notes 7:1123–1124CrossRefGoogle Scholar
  7. Arnaud JF, Laval G (2004) Stability of genetic structure and effective population size inferred from temporal changes of microsatellite DNA polymorphisms in the land snail Helix aspersa (Gastropoda : Helicidae). Biol J Linn Soc 82:89–102CrossRefGoogle Scholar
  8. Bartley D, Bagley M, Gall G, Bentley B (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv Biol 6:365–375CrossRefGoogle Scholar
  9. Baur B (1986) Patterns of dispersion, density and dispersal in alpine populations of the land snail Arianta arbustorum (L.) (Helicidae). Holarct Ecol 9:117–125Google Scholar
  10. Baur B, Baur A (1995) Habitat-related dispersal in the rock-dwelling land snail Chondrina clienta. Ecography 18:123–130CrossRefGoogle Scholar
  11. Baur B, Ledergerber S, Kothbauer H (1997) Passive dispersal on mountain slopes: shell shape-related differences in downhill rolling in the land snails Arianta arbustorum and Arianta chamaeleon (Helicidae). Veliger 40:84–85Google Scholar
  12. Baur B, Schileyko AA, Baur A (2000) Ecological observations on Arianta aethiops aethiops (Helicidae), a land snail endemic to the South Carpathian mountains. J Molluscan Stud 66:285–289CrossRefGoogle Scholar
  13. Bengtsson J, Baur B (1993) Do pioneers have r-selected traits? Life-history patterns among colonizing terrestrial gastropods. Oecologia (Berl.) 94:17–22CrossRefGoogle Scholar
  14. Burnand J, Hasspacher B (1999) Waldstandorte beider Basel. Kommentar zur vegetationskundlichen Standortskartierung der Wälder. Verlag des Kantons Basel-Landschaft, LiestalGoogle Scholar
  15. Clements R, Ng PKL, Lu XX, Ambu S, Schilthuizen M, Bradshow CJA (2008) Using biogeographical patterns of endemic land snails to improve conservation planning for limestone karsts. Biol Conserv 141:2751–2764CrossRefGoogle Scholar
  16. Conner JK, Hartl DL (2004) A primer of ecological genetics. Sinauer Associates, Inc., SunderlandGoogle Scholar
  17. Dépraz A (2008) Low dispersing species: population genetic processes in space and time—the genus Trochulus (Gastropoda: Hygromiidae) as a case study. PhD, University of LausanneGoogle Scholar
  18. Dépraz A, Cordellier M, Hausser J, Pfenninger M (2008) Postglacial recolonisation at a snail’s pace (Trochulus villosus): confronting competing refugia hypotheses using model selection. Mol Ecol 17:2449–2462CrossRefPubMedGoogle Scholar
  19. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  20. Frankham R (2003) Genetics and conservation biology. C R Biol 326:S22–S29CrossRefPubMedGoogle Scholar
  21. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  22. Kerney MP, Cameron RAD, Jungbluth JH (1983) Die Landschnecken Nord- und Mitteleuropas. Paul Parey Verlag, HamburgGoogle Scholar
  23. Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209PubMedGoogle Scholar
  24. Moritz C (1994) Defining “evolutionarily significant units” for conservation. Trends Ecol Evol 9:373–375CrossRefGoogle Scholar
  25. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size. Queensland Government, Department of Primary Industries and Fisheries, Brisbane, Australia, Ver. 1.1.1Google Scholar
  26. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  27. Raymond M, Rousset F (1995) Genepop (version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  28. Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  29. Ross TK (1999) Phylogeography and conservation genetics of the Iowa Pleistocene snail. Mol Ecol 8:1363–1373CrossRefPubMedGoogle Scholar
  30. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  31. Rousset F (2008) GENEPOP’007: a complete re-implementation of the GENEPOPsoftware for Windows and Linux. Mol Ecol Resour 8:103–106CrossRefGoogle Scholar
  32. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  33. Schilthuizen M, Lombaerts M (1994) Population structure and levels of gene flow in the mediterranean land snail Albinaria corrugata (Pulmonata: Clausiliidae). Evolution Int J org Evolution 48:577–586Google Scholar
  34. Schönswetter P, Stehlik I, Holderegger R, Tribsch A (2005) Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol 14:3547–3555CrossRefPubMedGoogle Scholar
  35. Schweiger O, Frenzel M, Durka W (2004) Spatial genetic structure in a metapopulation of the land snail Cepaea nemoralis (Gastropoda: Helicidae). Mol Ecol 13:3645–3655CrossRefPubMedGoogle Scholar
  36. Stehlik I, Schneller JJ, Bachmann K (2001) Resistance or emigration: response of the high-alpine plant Eritrichium nanum (L.) Gaudin to the ice age within the Central Alps. Mol Ecol 10:357–370CrossRefPubMedGoogle Scholar
  37. Stehlik I, Blattner FR, Holderegger R, Bachmann K (2002) Nunatak survival of the high Alpine plant Eritrichium nanum (L.) Gaudin in the central Alps during the ice ages. Mol Ecol 11:2027–2036CrossRefPubMedGoogle Scholar
  38. Turner H, Wüthrich M, Rüetschi J (1994) Rote Liste der gefährdeten Weichtiere der Schweiz. In: Duelli P (ed) Rote Listen der gefährdeten Tierarten in der Schweiz. Bundesamt für Umwelt, Wald und Landschaft, BernGoogle Scholar
  39. Turner H, Kuiper JGJ, Thew N, Bernasconi R, Rüetschi J, Wüthrich M, Gosteli M (1998) Atlas der Mollusken der Schweiz und Liechtensteins. Fauna Helv 2:342–343Google Scholar
  40. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  41. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:s1358–s1370Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Sylvain Ursenbacher
    • 1
  • Caren Alvarez
    • 1
  • Georg F. J. Armbruster
    • 1
    • 2
  • Bruno Baur
    • 1
  1. 1.Department of Environmental Sciences, Section of Conservation BiologyUniversity of BaselBaselSwitzerland
  2. 2.Botanisches Institut der Universität BaselBaselSwitzerland

Personalised recommendations