Conservation Genetics

, Volume 11, Issue 4, pp 1247–1255 | Cite as

Spatial genetic structure of Coccoloba cereifera (Polygonaceae), a critically endangered microendemic species of Brazilian rupestrian fields

  • Rennan G. Moreira
  • Ross A. McCauley
  • Aurea C. Cortés-Palomec
  • G. Wilson Fernandes
  • Ken Oyama
Research Article

Abstract

Coccoloba cereifera (Polygonaceae) is an extremely rare endemic shrub found exclusively in the rupestrian fields of Serra do Cipó, southeastern, Brazil. We assessed the genetic diversity and structure across the single occurrence area of C. cereifera. The genetic variation at 13 microsatellite loci was estimated from 139 individuals sampled in nine patches. The number of alleles per locus varied from two to ten; the expected and observed heterozygosity ranged from 0.324 to 0.566 and 0.337 to 0.529, respectively. Microsatellites detected low but statistically significant levels of differentiation among patches (FST = 0.123, RST = 0.105), whereas Mantel test results showed a weak but significant pattern of isolation by distance (r2 = 0.31, P < 0.002). Bayesian clustering indicated two subdivisions connected via admixture. Habitat heterogeneity across the drainage basin of the Rio Indequicé is likely limiting gene flow within patches of the geographically restricted population. While there is currently no evidence for a direct genetic risk to species survival, the apparent natural segregation occurring within the species could be exacerbated by future land use changes and the influx of alien species which could lead to demographic reductions in population size leading to a reduction in genetic diversity and an increase in population subdivision. We suggest that maintaining the integrity of the habitat within the small range of the species and continued monitoring of the effects of alien species would be the wisest use of management resources.

Keywords

Rupestrian fields Microsatellite Rare Narrow Endemism Trioecy 

Notes

Acknowledgments

We thank K. Paige and T. Holtsford for comments on earlier drafts of this manuscript. We thank LC Resende for field work and laboratory assistance. This study was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (30.9633/2007-9, 15.1817/2008-1, 306), Fundação de Amparo à Pesquisa do Estado de Minas Gerais (Proc. APQ 01278-08, CRA 495/07) and Planta Tecnologia Ambiental. Permiting to transport biological material from Brazil was granted by the Instituto Brasileiro do Meio Ambiente e dos Recursos Renováveis, CITES/FLORA—(license number 07BR000321/DF). This study was completed in partial fulfillment of the masters degree of R.G.M. at the Universidade Federal de Minas Gerais.

References

  1. Aldrich PR, Hamrick JL, Chavarriaga-Aguirre P, Kochert G (1998) Microsatellite analysis of demographic genetic structure in fragmented populations of the tropical tree Symphonia globulifera. Mol Ecol 7:933–944CrossRefPubMedGoogle Scholar
  2. Araújo ED, Costa M, Chaud-Netto J, Fowler HD (2004) Body size and flight distance in stingless bees (Hymenoptera: Meliponini): inference of flight range and possible ecological implications. Braz J Biol 64:563–568CrossRefPubMedGoogle Scholar
  3. Biodiversitas (2007) Revisão das Listas das Espécies da Flora e da Fauna ameaçadas de Extinção do Estado de Minas Gerais. In: Fundação Biodiversitas (ed), Belo Horizonte, pp 1–47. Available at: http://www.biodiversitas.org.br/listas-mg/RelatorioListasmg_Vol2.pdf. Accessed Nov 2008
  4. Cole CT (2003) Genetic variation in rare and common plants. Annu Rev Ecol Evol Syst 34:213–237CrossRefGoogle Scholar
  5. Couvet D (2002) Deleterious effects of restricted gene flow infragmented populations. Conserv Biol 16:369–376CrossRefGoogle Scholar
  6. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytoch Bull 19:11–15Google Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620CrossRefPubMedGoogle Scholar
  8. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  9. Furches MS, Wallace LE, Helenurm K (2009) High genetic divergence characterizes populations of the endemic plant Lithophragma maximum (Saxifragaceae) on San Clement Island. Conserv Genet 10:115–126CrossRefGoogle Scholar
  10. Gao LZ (2005) Microsatellite variation within and among populations of Oryza officinalis (Poaceae), an endangered wild rice from China. Mol Ecol 14:4287–4297CrossRefPubMedGoogle Scholar
  11. Giulietti AM, Pirani JR, Harley RM (1997) Espinhaço range region: eastern Brazil. In: Davis SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centre of plants diversity: a guide and strategy for their conservation. World Wildlife Fund/World Conservation Union, Cambridge, pp 397–404Google Scholar
  12. Goudet J (2002) FSTAT: a program to estimate and test gene diversities and fixation indices.Version 2.9.3.2. Available at http://www.unil.ch/izea/softwares/fstat.html
  13. Goudet J, Raymond M, de Meeds T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedGoogle Scholar
  14. Hamrick JL, Godt MJ, Murawski DA, Loveless MD (1991) Correlations between species traits and allozyme diversity: implications for conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 75–86Google Scholar
  15. Holtsford TP, Hancock JF (1998) Evolution, population genetics and germplasm preservation. HortScience 33:3–5Google Scholar
  16. Hulbert SH (1971) The non-concept of species diversity: a critique and alternative parameters. Ecology 52:577–586CrossRefGoogle Scholar
  17. Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biod Conserv 16:2185–2200CrossRefGoogle Scholar
  18. Kang M, Wang J, Huang H (2008) Demographic bottlenecks and low gene flow in remnant populations of the critically endangered Berchemiella wilsonii var. pubipetiolata (Rhamnaceae) inferred from microsatellite markers. Conserv Genet 9:191–199CrossRefGoogle Scholar
  19. Langella O (1999) POPULATIONS 1.2.30: Population genetic software: individuals or populations distances based on allelic frequencies, phylogenetic trees, file conversions. Available at: http://bioinformatics.org/~tryphon/populations/
  20. Leimu R, Mutikainen P, Koricheva J, Fischer M (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952CrossRefGoogle Scholar
  21. Loveless MD, Hamrick JL (1984) Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Syst 15:65–95CrossRefGoogle Scholar
  22. Madeira JA, Fernandes GW (1999) Reproductive phenology of sympatric taxa of Chamaecrista (Leguminosae) in Serra do Cipó, Brazil. J Trop Ecol 15:463–479CrossRefGoogle Scholar
  23. Mantel NA (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  24. Moreira RG, McCauley RA, Cortés-Palomec AC, Lovato MB, Fernandes GW, Oyama K (2008) Isolation and characterization of microsatellite loci in Coccoloba cereifera (Polygonaceae), an endangered species endemic to the Serra do Cipó, Brazil. Mol Ecol Res 8:854–857CrossRefGoogle Scholar
  25. Moritz C (1994) Defining “evolutionarily significant units” for conservation. TREE 9:373–375Google Scholar
  26. Myers N, Mittermeier RA, Mittermeier CG, Fonseca GAB, Kent J (2000) Biodiversity hot spots for conservation priorities. Nature 403:853–858CrossRefPubMedGoogle Scholar
  27. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170CrossRefPubMedGoogle Scholar
  28. Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13:1143–1155CrossRefPubMedGoogle Scholar
  29. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  30. Pritchard JK, Stephens M, Donnely P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  31. Ratter JA, Ribeiro JF, Bridgewater S (1997) The brazilian cerrado vegetation and threats to its biodiversity. Ann Bot 80:223–230CrossRefGoogle Scholar
  32. Ribeiro KT, Fernandes GW (1999) Geographic distribution of Coccoloba cereifera Schw. (Polygonaceae), a narrow endemic plant from Serra do Cipó, Brazil. Bios 7:7–12Google Scholar
  33. Ribeiro KT, Fernandes GW (2000) Patterns of abundance of a narrow endemic species in a tropical and infertile montane habitat. Plant Ecol 147:205–218CrossRefGoogle Scholar
  34. Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J org Evolution 43:223–225Google Scholar
  35. Silva CA, Cano MAO, Vieira MF, Fernandes GW (2008) Trioecy in Coccoloba cereifera Schwacke (Polygonaceae), a narrow endemic and threatened tropical species. Braz Arch Biol Technol 51:1003–1010Google Scholar
  36. Takezaki N, Nei M (2008) Empirical tests of the reliability of phylogenetic trees constructed with microsatellite DNA. Genetics 178:385–392CrossRefPubMedGoogle Scholar
  37. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol and Evol 24:1596–1599CrossRefGoogle Scholar
  38. Theodorou K, Couvet D (2006) Genetic load in subdivided populations: interactions between the migration rate, the size and the number of subpopulations. Heredity 96:69–78PubMedGoogle Scholar
  39. Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133:737–749PubMedGoogle Scholar
  40. Viana LR, Fernandes GW, Silva CA (2005) ‘Ecological road’ threatens endemic Brazilian plant with extinction. Plant Talk 41:15Google Scholar
  41. Wang L, Guo J, Zhao GF (2006) Genetic diversity of the endangered and endemic species Psathyrostachys huashanica natural populations using simple sequence repeats (SSRs) markers. Biochem Syst Ecol 34:310–318CrossRefGoogle Scholar
  42. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J org Evolution 38:1358–1370Google Scholar
  43. Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst. 37:433–458CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Rennan G. Moreira
    • 1
  • Ross A. McCauley
    • 2
    • 3
  • Aurea C. Cortés-Palomec
    • 2
  • G. Wilson Fernandes
    • 1
  • Ken Oyama
    • 2
  1. 1.Ecologia Evolutiva & Biodiversidade/DBGICB/Universidade Federal de Minas GeraisBelo HorizonteBrazil
  2. 2.Centro de Investigaciones en EcosistemasUniversidad Nacional Autónoma de MéxicoMorelia, MichoacánMéxico
  3. 3.Department of BiologyFort Lewis CollegeDurangoUSA

Personalised recommendations