Conservation Genetics

, Volume 11, Issue 3, pp 1051–1062 | Cite as

Evidence for introgressive hybridization of wild common quail (Coturnix coturnix) by domesticated Japanese quail (Coturnix japonica) in France

  • Olympe Chazara
  • Francis Minvielle
  • Denis Roux
  • Bertrand Bed’hom
  • Katia Feve
  • Jean-Luc Coville
  • Boniface B. Kayang
  • Sophie Lumineau
  • Alain Vignal
  • Jean-Marie Boutin
  • Xavier Rognon
Research Article


Many cases of introgressive hybridization have been reported among birds, particularly following introduction to the natural environment of individuals belonging to non-native similar taxa. This appears to be the case for common quail (Coturnix coturnix) in France where wild populations artificially come into contact with domesticated Japanese quail (Coturnix japonica) raised for meat and egg production but sometimes released for hunting purposes. In order to highlight the possible existence of gene flows between both taxa, a comparison of nuclear (25 microsatellite loci) and mitochondrial (sequencing and RFLP) DNA polymorphisms was performed on 375 common quails (from France, Spain and Morocco) and 140 Japanese quails (from France and Japan). Genetic diversity was assessed, and analyses (Factorial Correspondence Analysis, Bayesian admixture) of molecular polymorphisms revealed clear differentiation between the two taxa, making it possible to detect for hybrids among quails sampled in the wild. Eight birds expected to be common quail were found to be two pure Japanese quail, one probable backcross to C. japonica, three F1/F2 hybrids, and two probable backcrosses to Coturnix coturnix. These results show that Japanese quails were released and suggest that the two taxa hybridize in the wild. They confirm the urgent need for preventing the release of pure Japanese or hybrid quails to preserve the genetic integrity of C. coturnix. The tools developed for this study should be useful for accurate monitoring of wild quail populations within the framework of avifauna management programs.


Coturnix coturnix Coturnix japonica Quail mtDNA Microsatellite Introgressive hybridization 

Supplementary material

10592_2009_9951_MOESM1_ESM.pdf (749 kb)
Supplementary material 1 (PDF 749 kb)


  1. Allendorf FW, Leary RF, Spruell P, Wenburg JK (2001) The problems with hybrids: setting conservation guidelines. Trends Ecol Evol 16:613–622. doi:10.1016/S0169-5347(01)02290-X CrossRefGoogle Scholar
  2. Andersson M (1999) Hybridization and skua phylogeny. Proc R Soc Lond 266:1579–1585. doi:10.1098/rspb.1999.0818 CrossRefGoogle Scholar
  3. Andreotti A, Baccetti N, Perfetti A, Besa M, Genovesi P, Guberti V (2001) Mammiferi e Uccelli esotici in Italia: analisi del fenomeno, impatto sulla biodiversità e linee guida gestionali. Quad Conservazione Natura 2:1–189Google Scholar
  4. Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New YorkGoogle Scholar
  5. Arnold ML (2004) Natural hybridization and the evolution of domesticated, pest and disease organisms. Mol Ecol 13:997–1007. doi:10.1111/j.1365-294X.2004.02145.x CrossRefPubMedGoogle Scholar
  6. Avise JC (1994) Molecular markers, natural history and evolution. Chapman & hall, New YorkGoogle Scholar
  7. Baratti M, Ammannati M, Magnelli C, Dessi-Fulgheri F (2005) Introgression of chukar genes into a reintroduced red-legged partridge (Alectoris rufa) population in central Italy. Anim Genet 36:29–35. doi:10.1111/j.1365-2052.2004.01219.x CrossRefPubMedGoogle Scholar
  8. Barilani M, Derégnaucourt S, Gallego S, Galli L, Mucci N, Piombo R, Puigcerver M, Rimondi S, Rodríguez-Teijeiro JD, Spanò S, Randi E (2005) Detecting hybridization in wild (Coturnix c. coturnix) and domesticated (Coturnix c. japonica) quail populations. Biol Conserv 126:445–455. doi:10.1016/j.biocon.2005.06.027 CrossRefGoogle Scholar
  9. Barton NH (2001) The role of hybridization in evolution. Mol Ecol 10:551–568. doi:10.1046/j.1365-294x.2001.01216.x CrossRefPubMedGoogle Scholar
  10. Barton NH, Hewitt GM (1989) Adaptation, speciation and hybrid zones. Nature 341:497–503. doi:10.1038/341497a0 CrossRefPubMedGoogle Scholar
  11. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996-2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5171, University Montpellier II, Montpellier, FranceGoogle Scholar
  12. Bernatchez L, Savard L, Dodson JJ, Pallotta D (1988) Mitochondrial DNA sequence heterogeneity among James-Hudson Bay anadromous coregonines. Finn Fish Res 9:17–26Google Scholar
  13. BirdLife International (2004) State of the world’s birds 2004: indicators for our changing planet. BirdLife International, CambridgeGoogle Scholar
  14. Boecklen WJ, Howard DJ (1997) Genetic analysis of hybrid zones: numbers of markers and power of resolution. Ecology 78:2611–2616CrossRefGoogle Scholar
  15. Boutin J-M (1999) Analyse des ailes de cailles des blés prélevées dans le département des Hautes-Pyrénées. Synthèse de 1997 à 1999. Internal Report, ONC, Chizé, FranceGoogle Scholar
  16. Chang CM, Coville JL, Coquerelle G, Gourichon D, Oulmouden A, Tixier-Boichard M (2006) Complete association between a retroviral insertion in the tyrosinase gene and the recessive white mutation in chickens. BMC Genomics 7:19. doi:10.1186/1471-2164-7-19 CrossRefPubMedGoogle Scholar
  17. Chazara O, Lumineau S, Minvielle F, Roux D, Feve K, Kayang B, Boutin J-M, Vignal A, Coville J-L, Rognon X (2006) Etude des risques d’introgression génétique de la caille des blés (Coturnix coturnix coturnix) par la caille japonaise (C. c. japonica): comparaison et intégration des données comportementales et moléculaires obtenues dans le sud-est de la France. Les Actes du BRG 6-6e colloque national 317–334Google Scholar
  18. del Hoyo J, Elliott A, Sargatal J (1992) Handbook of the Birds of the World, vol 2: New World Vultures to Guinea Fowl. Lynx Edicions, Barcelona, SpainGoogle Scholar
  19. Derégnaucourt S, Guyomarc’h J-C (2003) Mating call discrimination in female European (Coturnix c. coturnix) and Japanese quail (Coturnix c. japonica). Ethology 109:107–119. doi:10.1046/j.1439-0310.2003.00854.x CrossRefGoogle Scholar
  20. Derégnaucourt S, Guyomarc’h J-C, Richard V (2001) Classification of hybrid crows in quail using artificial neural networks. Behav Processes 56:103–112. doi:10.1016/S0376-6357(01)00188-7 CrossRefPubMedGoogle Scholar
  21. Derégnaucourt S, Guyomarc’h J-C, Spano S (2005) Behavioural evidence of hybridization (Japanese x European) in domestic quail released as game birds. Appl Anim Behav Sci 94:303–318. doi:10.1016/j.applanim.2005.03.002 CrossRefGoogle Scholar
  22. Desjardins P, Morais R (1991) Nucleotide sequence and evolution of coding and noncoding regions of a quail mitochondrial genome. J Mol Evol 32:153–161. doi:10.1007/BF02515387 CrossRefPubMedGoogle Scholar
  23. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  24. Fumihito A, Miyake T, Sumi SI, Takada M, Ohno S, Kondo N (1994) One subspecies of the red junglefowl (Gallus gallus gallus) suffices as the matriarchic ancestor of all domestic breeds. Proc Natl Acad Sci USA 91:12505–12509. doi:10.1073/pnas.91.26.12505 CrossRefPubMedGoogle Scholar
  25. Grant PR, Grant BR (1992) Hybridization of bird species. Sciences (New York) 256:193–197Google Scholar
  26. Guyomarc’h J-C (2003) Elements for a common quail (Coturnix c. coturnix) management plan. Game Wildl Sci 20:1–92Google Scholar
  27. Guyomarc’h J-C, Combreau O, Puigcerver M, Fontoura P, Aebischer N (1998) Coturnix coturnix quail. BWP Update 2:27–46Google Scholar
  28. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  29. Johnsgard PA (1988) The quails, partridges, and francolins of the world. Oxford University Press, OxfordGoogle Scholar
  30. Kayang BB, Fillon V, Inoue-Murayama M, Miwa M, Leroux S, Fève K, Monvoisin J-L, Pitel F, Vignoles M, Mouilhayrat C, Beaumont C, Ito S, Minvielle F, Vignal A (2006) Integrated maps in quail (Coturnix japonica) confirm the high degree of synteny conservation with chicken (Gallus gallus) despite 35 million years of divergence. BMC Genomics 7:101. doi:10.1186/1471-2164-7-101 CrossRefPubMedGoogle Scholar
  31. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150 CrossRefPubMedGoogle Scholar
  32. Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution Int J org Evolution 55:1325–1335Google Scholar
  33. McGinnity P, Prödöhl P, Ferguson A, Hynes R, Maoiléidigh NO, Baker N, Cotter D, O’Hea B, Cooke D, Rogan G, Taggart J, Cross T (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc Biol Sci 270:2443–2450. doi:10.1098/rspb.2003.2520 CrossRefPubMedGoogle Scholar
  34. Minvielle F (2004) The future of Japanese quail for research and production. Worlds Poult Sci J 60:500–507. doi:10.1079/WPS200433 CrossRefGoogle Scholar
  35. Minvielle F, Coville JL, Krupa A, Monvoisin JL, Maeda Y, Okamoto S (2000) Genetic similarity and relationships of DNA fingerprints with performance and with heterosis in Japanese quail lines from two origins and under reciprocal recurrent or within-line selection for early egg production. Genet Sel Evol 32:289–302. doi:10.1051/gse:2000119 CrossRefPubMedGoogle Scholar
  36. Minvielle F, Moussu C, Rognon X, Lumineau S, Gourichon D (2006) Development of an experimental hybrid quail population (Coturnix japonica x Coturnix coturnix): the F2 generation. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, BrazilGoogle Scholar
  37. Munoz-Fuentes V, Vila C, Green AJ, Negro JJ, Sorenson MD (2007) Hybridization between white-headed ducks and introduced ruddy ducks in Spain. Mol Ecol 16:629–638. doi:10.1111/j.1365-294X.2006.03170.x CrossRefPubMedGoogle Scholar
  38. Nishibori M, Hayashi T, Tsudzuki M, Yamamoto Y, Yasue H (2001) Complete sequence of the Japanese quail (Coturnix japonica) mitochondrial genome and its genetic relationship with related species. Anim Genet 32:380–385. doi:10.1046/j.1365-2052.2001.00795.x CrossRefPubMedGoogle Scholar
  39. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  40. Puigcerver M, Vinyoles D, Rodríguez-Teijeiro JD (2007) Does restocking with Japanese quail or hybrids affect native populations of common quail Coturnix coturnix?. Biol Conserv 136:628–635. doi:10.1016/j.biocon.2007.01.007 CrossRefGoogle Scholar
  41. Randi E, Bernard-Laurent A (1999) Population genetics of a hybrid zone between the red-legged partridge and rock partridge. Auk 116:324–337Google Scholar
  42. Raufaste N, Orth A, Belkhir K, Senet D, Smadja C, Baird SJE, Bonhomme F, Dod B, Boursot P (2005) Inferences of selection and migration in the Danish house mouse hybrid zone. Biol J Linn Soc Lond 84:593–616. doi:10.1111/j.1095-8312.2005.00457.x CrossRefGoogle Scholar
  43. Rhymer JM, Simberloff D (1996) Extinction by hybridization and introgression. Annu Rev Ecol Syst 27:83–109. doi:10.1146/annurev.ecolsys.27.1.83 CrossRefGoogle Scholar
  44. Rognon X, Guyomard R (2003) Large extent of mitochondrial DNA transfer from Oreochromis aureus to O. niloticus in West Africa. Mol Ecol 12:435–445. doi:10.1046/j.1365-294X.2003.01739.x CrossRefPubMedGoogle Scholar
  45. Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386Google Scholar
  46. Staden R, Beal KF, Bonfield JK (2000) The Staden package, 1998. Methods Mol Biol 132:115–130PubMedGoogle Scholar
  47. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  48. Vähä JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72. doi:10.1111/j.1365-294X.2005.02773.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Olympe Chazara
    • 1
  • Francis Minvielle
    • 1
  • Denis Roux
    • 3
  • Bertrand Bed’hom
    • 1
  • Katia Feve
    • 4
  • Jean-Luc Coville
    • 1
  • Boniface B. Kayang
    • 4
    • 5
  • Sophie Lumineau
    • 6
  • Alain Vignal
    • 4
  • Jean-Marie Boutin
    • 7
  • Xavier Rognon
    • 2
  1. 1.UMR1313 Génétique Animale et Biologie IntégrativeINRAJouy-en-JosasFrance
  2. 2.UMR1313 Génétique Animale et Biologie IntégrativeAgroParisTechParisFrance
  3. 3.Station de SaultONCFSSaultFrance
  4. 4.UMR444 Génétique CellulaireINRACastanet-TolosanFrance
  5. 5.Department of Animal ScienceUniversity of GhanaLegonGhana
  6. 6.UMR6552 Ethologie Evolution EcologieUniversité de Rennes 1RennesFrance
  7. 7.Station de ChizéONCFSVilliers-en-BoisFrance

Personalised recommendations