Advertisement

Conservation Genetics

, Volume 11, Issue 3, pp 1033–1042 | Cite as

Which moss is which? Identification of the threatened moss Orthodontium gracile using molecular and morphological techniques

  • J. K. RowntreeEmail author
  • R. S. Cowan
  • M. Leggett
  • M. M. Ramsay
  • M. F. Fay
Research Article

Abstract

Taxonomic misidentification has potentially serious consequences for the management of threatened species. Closely related moss species are often difficult to distinguish from each other using morphological characteristics. Here we compared the use of molecular (DNA barcoding of the trnL-F intron, AFLPs) and morphological techniques to demonstrate that ex situ cultures, held for re-introduction trails, of the UK critically endangered moss Orthodontium gracile were contaminated with the potentially invasive species O. lineare. Barcoding techniques and AFLPs were both successful in determining Orthodontium species identity. There was some discrepancy between determinations from molecular and morphological techniques and some individuals were misidentified using morphological characteristics alone. When species identity is critical, for example prior to re-establishment or re-introduction programmes, we recommend that identity of mosses and other bryophytes be established by molecular techniques, in particular barcoding of the trnL-F intron.

Keywords

Ex situ conservation Threatened bryophytes Barcoding trnL-F intron AFLP Stereid cells 

Notes

Acknowledgments

We thank R. D. Porley, Natural England (previously English Nature), J. G. Duckett, Queen Mary University of London, D. G. Long, Royal Botanic Gardens Edinburgh and G. Rothero for Scottish Natural Heritage for collecting and donating English, reference and Scottish plants. Thanks also to R. F. Preziosi, The University of Manchester for statistical advice, the Mycology Section at RBG, Kew for use of the microscope and camera, R. D. Porley and two anonymous reviewers for helpful comments on an earlier draft. Funding for the ex situ project was provided by Natural England, Scottish Natural Heritage and the Countryside Council for Wales. The Royal Botanic Gardens, Kew wishes to acknowledge the financial support of Natural England for the molecular work.

References

  1. Blockeel TL, Long DG (1998) A check-list and census catalogue of British and Irish bryophytes. British Bryological Society, CardiffGoogle Scholar
  2. Burch J (2003) A pilot study for the ex situ conservation of bryophytes. August 2000–July 2003. Final report. RBG KewGoogle Scholar
  3. Church JM, Hodgetts NG, Preston CD et al (2001) British red data books—mosses and liverworts. JNCC, PeterboroughGoogle Scholar
  4. Cowan RS, Chase MW, Kress WJ et al (2006) 300, 000 species to identify: problems, progress, and prospects in DNA barcoding of land plants. Taxon 55:611–616CrossRefGoogle Scholar
  5. Cox CJ, Hedderson TAJ (1999) Phylogenetic relationships among the ciliate arthrodontous mosses: evidence from chloroplast and nuclear DNA sequences. Plant Syst Evol 215:119–139. doi: 10.1007/BF00984651 CrossRefGoogle Scholar
  6. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Am 19:11–15Google Scholar
  7. Duckett JG, Goode JA, Matcham HW (2001) Studies of protonemal morphogenesis in mosses. VIII. The gemmiferous protonemata of orthodontium and dicranoweisia. J Bryol 23:181–193Google Scholar
  8. ECCB (1995) Red data book of European bryophytes. European committee for the conservation of bryophytesGoogle Scholar
  9. Ford CS, Ayres KL, Toomey N et al. (2009) Selection of candidate coding DNA barcoding regions for use on land plants. Bot J Linn Soc (in press)Google Scholar
  10. Hassel K, Sastad SM, Gunnarsson U et al (2005) Genetic variation and structure in the expanding moss Pogonatum dentatum (Polytrichaceae) in its area of origin and in a recently colonized area. Am J Bot 92:1684–1690CrossRefGoogle Scholar
  11. Hebert PDN, Ratnasingham S, deWaard JR (2003) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond Ser B-Biol Sci 270:S96–S99. doi: 10.1098/rsbl.2003.0025 CrossRefGoogle Scholar
  12. Hedenas L, Herben T, Rydin H et al (1989) Ecology of the invading moss species Orthodontium lineare in Sweden—substrate preference and interactions with other species. J Bryol 15:565–581Google Scholar
  13. Herben T (1994) Local-rate of spreading and patch dynamics of an invasive moss species, Orthodontium lineare. J Bryol 18:115–125Google Scholar
  14. Hill MO, Preston CD, Smith AJE (eds) (1994) Atlas of the bryophytes of Britain and Ireland. Vol 3. Mosses (Diplolepideae). Harley Books, ColchesterGoogle Scholar
  15. IUCN (1998) IUCN guidelines for re-introductions. IUCN, GlandGoogle Scholar
  16. Long DG, Paton JA, Squirrell J et al (2006) Morphological, ecological and genetic evidence for distinguishing Anastrophyllum joergensenii Schiffn. and A. alpinum Steph. (Jungermanniopsida : Lophoziaceae). J Bryol 28:108–117Google Scholar
  17. Meijer W (1952) The genus Orthodontium. Acta Bot Neerl 1:3–80Google Scholar
  18. Metcalf JL, Pritchard VL, Silvestri SM et al (2007) Across the great divide: genetic forensics reveals misidentification of endangered cutthroat trout populations. Mol Ecol 16:4445–4454. doi: 10.1111/j.1365-294X.2007.03472.x CrossRefPubMedGoogle Scholar
  19. O’Hanlon PC, Peakall R (2000) A simple method for the detection of size homoplasy among amplified fragment length polymorphism fragments. Mol Ecol 9:815–816. doi: 10.1046/j.1365-294x.2000.00924.x CrossRefPubMedGoogle Scholar
  20. Tropicos.org Missouri_Botanical_Garden (2008) http://www.tropicos.org/NameSearch.aspx?name=orthodontium&commonname=. Accessed 23–24/09/08
  21. Porley RD (1998) Using nerve sections to separate Orthodontium gracile Schwaegr. ex Br. Eur. and O. lineare Schwaegr. J Bryol 20:500–501Google Scholar
  22. Porley RD, Matcham HW (2003) The status of Orthodontium gracile in Britain and Ireland. J Bryol 25:64–66. doi: 10.1179/037366803125002680 CrossRefGoogle Scholar
  23. Rowntree JK (2006) Development of novel methods for the initiation of in vitro bryophyte cultures for conservation. Plant Cell Tissue Organ Cult 87:191–201. doi: 10.1007/s11240-006-9154-7 CrossRefGoogle Scholar
  24. Rowntree JK, Ramsay MM (2005) Ex situ conservation of bryophytes: progress and potential of a pilot project. Bol Soc Esp Briol 26–27:17–22Google Scholar
  25. Savolainen V, Cowan RS, Vogler AP et al (2005) Towards writing the encyclopaedia of life: an introduction to DNA barcoding. Philos Trans R Soc B-Biol Sci 360:1805–1811. doi: 10.1098/rstb.2005.1730 CrossRefGoogle Scholar
  26. Skotnicki ML, Mackenzie AM, Clements MA et al (2005) DNA sequencing and genetic diversity of the 18S–26S nuclear ribosomal internal transcribed spacers (ITS) in nine Antarctic moss species. Antarct Sci 17:377–384. doi: 10.1017/S0954102005002816 CrossRefGoogle Scholar
  27. Smith AJE (2004) The moss flora of Britain & Ireland. Cambridge University Press, CambridgeGoogle Scholar
  28. Stieperaere H, Jacques E (1995) The spread of Orthodontium lineare and Campylopus introflexus in Belgium. Belg J Bot 128:117–123Google Scholar
  29. Swofford DL (1998) PAUP*: phylogenetic analysis using parsimony (*and other methods) V4. Sinauer Associates, Sunderland, MAGoogle Scholar
  30. Taberlet P, Gielly L, Pautou G et al (1991) Universal primers for amplification of 3 noncoding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi: 10.1007/BF00037152 CrossRefPubMedGoogle Scholar
  31. UK_Biodiversity_Group (1999) Tranche 2 action plans. Vol III—plants and fungi. UK Biodiversity Group & English Nature, PeterboroughGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • J. K. Rowntree
    • 1
    • 2
    Email author
  • R. S. Cowan
    • 1
  • M. Leggett
    • 1
  • M. M. Ramsay
    • 1
  • M. F. Fay
    • 1
  1. 1.Royal Botanic GardensKew, RichmondUK
  2. 2.Faculty of Life SciencesUniversity of ManchesterManchesterUK

Personalised recommendations