Conservation Genetics

, Volume 11, Issue 3, pp 1013–1021 | Cite as

Evidence for recent population bottlenecks in northern spotted owls (Strix occidentalis caurina)

  • W. Chris Funk
  • Eric D. Forsman
  • Matthew Johnson
  • Thomas D. Mullins
  • Susan M. Haig
Research paper

Abstract

The northern spotted owl (Strix occidentalis caurina) is one of the most controversial threatened subspecies ever listed under the US Endangered Species Act. Despite protection of its remaining forest habitat, recent field studies show continued declines of northern spotted owls. One potential threat to northern spotted owls which has not yet been shown is loss of genetic variation from population bottlenecks. Bottlenecks can increase the probability of mating among related individuals, potentially causing inbreeding depression, and can decrease adaptive potential. Here we report evidence for recent bottlenecks in northern spotted owls using a large genetic dataset (352 individuals and 10 microsatellite loci). The signature of bottlenecks was strongest in the Washington Cascade Mountains, in agreement with field data. Our results provide independent evidence that northern spotted owls have recently declined, and suggest that loss of genetic variation is an emerging threat to the subspecies’ persistence. Reduced effective population size (N e) shown here in addition to field evidence for demographic decline highlights the increasing vulnerability of this bird to extinction.

Keywords

Conservation genetics Bottleneck Microsatellites Effective population size Strix occidentalis caurina US Pacific Northwest US Endangered Species Act 

Notes

Acknowledgments

We are indebted to the many people who helped with sample collection and logistics in the field, particularly P. Loschl, S. Ackers, R. Anthony, R. Claremont, D. Herter, S. Hopkins, J. Reid, and S. Sovern. We also thank M. Miller, F. Allendorf, D. Tallmon, G. Luikart, and two anonymous reviewers for comments on the manuscript. Funding was provided by the USGS Forest and Rangeland Ecosystem Science Center and the USDA Forest Service Pacific Northwest Research Station. Samples were collected under US Fish and Wildlife Service threatened species permit number TE026280-11 and Oregon State University Animal Care and Use permit number 3091.

References

  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, OxfordGoogle Scholar
  2. Anthony RG, Forsman ED, Franklin AB, Anderson DR, Burnham KP, White GC, Schwarz CJ, Nichols JD, Hines JE, Olson GS, Ackers SH, Andrews LS, Biswell BL, Carlson PC, Diller LV, Dugger KM, Fehring KE, Fleming TL, Gerhardt RP, Gremel SA, Gutiérrez RJ, Happe PJ, Herter DR, Higley JM, Horn RB, Irwin LL, Loschl PJ, Reid JA, Sovern SG (2006) Status and trends in demography of northern spotted owls, 1985–2003. Wildl Monogr 163:1–47. doi: 10.2193/0084-0173(2006)163[1:SATIDO]2.0.CO;2 CrossRefGoogle Scholar
  3. Barrowclough GF, Groth JG, Mertz LA, Gutiérrez RJ (2005) Genetic structure, introgression, and a narrow hybrid zone between northern and California spotted owls (Strix occidentalis). Mol Ecol 14:1109–1120. doi: 10.1111/j.1365-294X.2005.02465.x CrossRefPubMedGoogle Scholar
  4. Beebee T, Rowe G (2001) Application of genetic bottleneck testing to the investigation of amphibian declines: a case study with natterjack toads. Conserv Biol 15:266–270. doi: 10.1046/j.1523-1739.2001.99438.x Google Scholar
  5. Beerli P, Felsenstein J (2001) Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proc Natl Acad Sci USA 98:4563–4568. doi: 10.1073/pnas.081068098 CrossRefPubMedGoogle Scholar
  6. Bürger R, Lynch M (1995) Evolution and extinction in a changing environment: a quantitative-genetic analysis. Evolution Int J Org Evolution 49:151–163. doi: 10.2307/2410301 Google Scholar
  7. Busch JD, Waser PM, DeWoody A (2007) Recent demographic bottlenecks are not accompanied by a genetic signature in banner-tailed kangaroo rats (Dipodomys spectabilis). Mol Ecol 16:2450–2462. doi: 10.1111/j.1365-294X.2007.03283.x CrossRefPubMedGoogle Scholar
  8. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  9. Crow JF, Kimura M (1970) An introduction to population genetics theory. Burgess Publishing, MinneapolisGoogle Scholar
  10. Dark SJ, Gutiérrez RJ, Gould GI (1998) The barred owl (Strix varia) invasion in California. Auk 115:50–56Google Scholar
  11. Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170. doi: 10.1073/pnas.91.8.3166 CrossRefPubMedGoogle Scholar
  12. Dieringer D, Schlötterer C (2003) Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol Ecol Notes 3:167–169. doi: 10.1046/j.1471-8286.2003.00351.x CrossRefGoogle Scholar
  13. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi: 10.1007/BF00221895 CrossRefGoogle Scholar
  14. Fenger M, Buchanan J, Cade TC, Forsman ED, Haig SM, Martin K, Rapley WA (2007) Northern spotted owl population enhancement and recovery in British Columbia. Report to British Columbia Minister of Natural ResourcesGoogle Scholar
  15. Funk WC, Mullins TD, Forsman ED, Haig SM (2007) Microsatellite loci for distinguishing spotted owls (Strix occidentalis), barred owls (Strix varia), and their hybrids. Mol Ecol Notes 7:284–286. doi: 10.1111/j.1471-8286.2006.01581.x CrossRefGoogle Scholar
  16. Funk WC, Forsman ED, Mullins TD, Haig SM (2008) Introgression and dispersal among spotted owl (Strix occidentalis) subspecies. Evol Appl 1:161–171. doi: 10.1111/j.1752-4571.2007.00002.x CrossRefGoogle Scholar
  17. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi: 10.1046/j.1365-294x.2001.01190.x CrossRefPubMedGoogle Scholar
  18. Gaunt AS, Oring LW (1997) Guidelines to the use of wild birds in research. The Ornithological Council, Washington, DCGoogle Scholar
  19. Goodnight KF, Queller DC (1999) Computer software for performing likelihood tests of pedigree relationship using genetic markers. Mol Ecol 8:1231–1234. doi: 10.1046/j.1365-294x.1999.00664.x CrossRefGoogle Scholar
  20. Goossens B, Chikhi L, Ancrenaz M, Lackman-Ancrenaz I, Andau P, Bruford MW (2006) Genetic signature of anthropogenic population collapse in orang-utans. PLoS Biol 4:285–291. doi: 10.1371/journal.pbio.0040025 CrossRefGoogle Scholar
  21. Gutiérrez RJ, Franklin AB, Lahaye WS (1995) Spotted owl. In: Poole A, Gill F (eds) The birds of North America No. 179. Academy of Natural Sciences, Philadelphia, Pennsylvania, and American Ornithologists’ Union, Washington, DC, pp 1–28Google Scholar
  22. Haig SM, Mullins TD, Forsman ED (2004a) Subspecific relationships and genetic structure in the spotted owl. Conserv Genet 5:683–705. doi: 10.1007/s10592-004-1864-y CrossRefGoogle Scholar
  23. Haig SM, Mullins TD, Forsman ED, Trail PW, Wennerberg L (2004b) Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv Biol 18:1347–1357. doi: 10.1111/j.1523-1739.2004.00206.x CrossRefGoogle Scholar
  24. Hsu Y-C, Severinghaus LL, Lin Y-S, Li S-H (2003) Isolation and characterization of microsatellite DNA markers from the Lanyu scops owl (Otus elegans botelensis). Mol Ecol Notes 3:595–597. doi: 10.1046/j.1471-8286.2003.00523.x CrossRefGoogle Scholar
  25. Hsu Y-C, Li S-H, Lin Y-S, Severinghaus LL (2006) Microsatellite loci from Lanyu scops owl (Otus elegans botelensis) and their cross-species application in four species of Strigidae. Conserv Genet 7:161–165. doi: 10.1007/s10592-005-5477-x CrossRefGoogle Scholar
  26. Kelly EG, Forsman ED (2004) Recent records of hybridization between barred owls (Strix varia) and northern spotted owls (S. occidentalis caurina). Auk 121:806–810. doi: 10.1642/0004-8038(2004)121[0806:RROHBB]2.0.CO;2 CrossRefGoogle Scholar
  27. Kelly EG, Forsman ED, Anthony RG (2003) Are barred owls displacing spotted owls? Condor 105:45–53. doi: 10.1650/0010-5422(2003)105[45:ABODSO]2.0.CO;2 CrossRefGoogle Scholar
  28. Lessa EP, Cook JA, Patton JL (2003) Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proc Natl Acad Sci USA 100:10331–10334. doi: 10.1073/pnas.1730921100 CrossRefPubMedGoogle Scholar
  29. Luikart G, England PR, Tallmon D, Jordan S, Taberlet P (2003) The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet 4:1–15. doi: 10.1038/nrg1226 CrossRefGoogle Scholar
  30. Milá B, Girman DJ, Kimura M, Smith TB (2000) Genetic evidence for the effect of a postglacial population expansion on the phylogeography of a North American songbird. Proc R Soc Lond B Biol Sci 267:1033–1040. doi: 10.1098/rspb.2000.1107 CrossRefGoogle Scholar
  31. Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. doi: 10.1007/s10592-005-9056-y CrossRefGoogle Scholar
  32. Noon BR, Blakesley JA (2006) Conservation of the northern spotted owl under the Northwest Forest Plan. Conserv Biol 20:288–296. doi: 10.1111/j.1523-1739.2006.00387.x CrossRefPubMedGoogle Scholar
  33. Olson GS, Anthony RG, Forsman ED, Ackers SH, Loschl PJ, Reid JA, Dugger KM, Glenn EM, Ripple WJ (2005) Modeling of site occupancy dynamics for northern spotted owls, with emphasis on the effects of barred owls. J Wildl Manage 69:918–932. doi: 10.2193/0022-541X(2005)069[0918:MOSODF]2.0.CO;2 CrossRefGoogle Scholar
  34. Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503. doi: 10.1093/jhered/90.4.502 CrossRefGoogle Scholar
  35. Proudfoot G, Honeycutt R, Douglas Slack R (2005) Development and characterization of microsatellite DNA primers for ferruginous pygmy-owls (Glaucidium brasilianum). Mol Ecol Notes 5:90–92. doi: 10.1111/j.1471-8286.2004.00842.x CrossRefGoogle Scholar
  36. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  37. Reichard TA (1974) Barred owl sightings in Washington. West Birds 5:138–140Google Scholar
  38. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494. doi: 10.1038/33136 CrossRefGoogle Scholar
  39. Schwartz MK, Luikart G, Waples RS (2007) Genetic monitoring as a promising tool for conservation and management. Trends Ecol Evol 22:25–33. doi: 10.1016/j.tree.2006.08.009 CrossRefPubMedGoogle Scholar
  40. Shriver MD, Jin L, Chakraborty R, Boerwinkle E (1993) VNTR allele frequency-distributions under the stepwise mutation model—a computer simulation approach. Genetics 134:983–993PubMedGoogle Scholar
  41. Soulé ME, Mills LS (1998) No need to isolate genetics. Science 282:1658–1659. doi: 10.1126/science.282.5394.1658 CrossRefGoogle Scholar
  42. Spear SF, Peterson CR, Matocq MD, Storfer A (2006) Molecular evidence for historical and recent population size reductions of tiger salamanders (Ambystoma tigrinum) in Yellowstone National Park. Conserv Genet 7:605–611. doi: 10.1007/s10592-005-9095-4 CrossRefGoogle Scholar
  43. Stokstad E (2005) Learning to adapt. Science 309:688–690. doi: 10.1126/science.309.5735.688 CrossRefPubMedGoogle Scholar
  44. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:585–595PubMedGoogle Scholar
  45. Taylor AL, Forsman ED (1976) Recent range extensions of the barred owl in western North America, including the first records for Oregon. Condor 78:560–561. doi: 10.2307/1367110 CrossRefGoogle Scholar
  46. Thode AB, Maltbie M, Hansen LA, Green LD, Longmire LL (2002) Microsatellite markers for the Mexican spotted owl (Strix occidentalis lucida). Mol Ecol Notes 2:446–448. doi: 10.1046/j.1471-8286.2002.00267.x CrossRefGoogle Scholar
  47. US Fish and Wildlife Service (1990) Endangered and threatened wildlife and plants: determination of threatened status of the northern spotted owl. Fed Regist 55:26114–26194Google Scholar
  48. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  49. Whitlock MC (2005) Combining probability from independent tests: the weighted Z-method is superior to Fisher’s approach. J Evol Biol 18:1368–1373. doi: 10.1111/j.1420-9101.2005.00917.x CrossRefPubMedGoogle Scholar
  50. Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562. doi: 10.1007/s10592-005-9009-5 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • W. Chris Funk
    • 1
    • 3
  • Eric D. Forsman
    • 2
  • Matthew Johnson
    • 1
  • Thomas D. Mullins
    • 1
  • Susan M. Haig
    • 1
  1. 1.US Geological Survey, Forest and Rangeland Ecosystem Science CenterCorvallisUSA
  2. 2.USDA Forest Service, Pacific Northwest Research StationCorvallisUSA
  3. 3.Department of BiologyColorado State UniversityFort CollinsUSA

Personalised recommendations