Conservation Genetics

, Volume 11, Issue 3, pp 951–963 | Cite as

Biogeographic history of the threatened species Araucaria araucana (Molina) K. Koch and implications for conservation: a case study with organelle DNA markers

  • P. Marchelli
  • C. Baier
  • C. Mengel
  • B. Ziegenhagen
  • L. A. Gallo
Research article


Fragmentation of the habitat due to glaciations, fires and human activities affected the distribution range of Araucaria araucana in southern South America. On the borders of the Argentinean Patagonian steppe, the species is restricted to isolated patches without natural regeneration. Our objective is to test the hypothesis that these populations are relicts of pre-Pleistocene origin. A total of 224 individuals from 16 populations were sampled. Twenty chloroplast microsatellites, 19 non-coding chloroplast DNA regions and eight mitochondrial DNA fragments were screened for polymorphisms. A low transferability rate of universal primers from Pinaceae and also a low variation were detected for this ancient species. Only one non-coding region of the chloroplast DNA showed polymorphism allowing the identification of five haplotypes. A low genetic differentiation (G ST  = 0.11; G′ ST  = 0.267) and lack of geographic structure was found. Allelic richness was lower and genetic differentiation higher among the eastern isolated populations, suggesting a long lasting persistence. Conservation guidelines are given for these relictual populations, which are located outside the limits of the National Parks.


Geographical genetic structure Chloroplast DNA Mitochondrial DNA Patagonian temperate forests Monkey puzzle tree Fragmentation 



Sampling of Araucaria araucana populations in National Parks was authorized within the INTA-APN collaboration projects. We thank F. Izquierdo for providing material from two localities and S. Liepelt and V. Kuhlenkamp for helping with the sequencing. This project was financed by the DFG (Deutsche Forschungsgemeinschaft—German Research Foundation, Grant No. ZI 698/4-1) and by the exchange program SECYT-DAAD (DA/PA03-BVIII/020). The distribution map of Araucaria was provided by the GIS Laboratory at INTA EEA Bariloche.


  1. Amos W, Sawcer SJ, Feakes RW, Rubinsztein DC (1996) Microsatellites show mutational bias and heterozygote instability. Nat Genet 13:390–391. doi: 10.1038/ng0896-390 CrossRefPubMedGoogle Scholar
  2. Azpilicueta MM, Marchelli P, Gallo LA (2009) The effects of Quaternary glaciations in Patagonia as evidenced by chloroplast DNA phylogeography of Southern beech Nothofagus oblique. Tree Genet Genomes (in press)Google Scholar
  3. Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83. doi: 10.1016/0003-2697(91)90120-I CrossRefPubMedGoogle Scholar
  4. Bekessy S, Allnutt T, Premoli A et al (2002) Genetic variation in the monkey puzzle tree (Araucaria araucana (Molina) K. Koch), detected using RAPDs. Heredity 88:243–249. doi: 10.1038/sj.hdy.6800033 CrossRefPubMedGoogle Scholar
  5. Bekessy SA, Ennos RA, Burgman MA, Newton AC, Ades PK (2003) Neutral DNA markers fail to detect genetic divergence in an ecologically important trait. Biol Conserv 110:267–275. doi: 10.1016/S0006-3207(02)00225-2 CrossRefGoogle Scholar
  6. Bennett K, Haberle S, Lumley S (2000) The last glacial-holocene transition in souther Chile. Science 290:325–328. doi: 10.1126/science.290.5490.325 CrossRefPubMedGoogle Scholar
  7. Bucci G, González-Martínez S, Le Prevost G et al (2007) Range-wide phylogeography and gene zones in Pinus pinaster Ait. revealed y chloroplast microsatellite markers. Mol Ecol 16:2137–2153. doi: 10.1111/j.1365-294X.2007.03275.x CrossRefPubMedGoogle Scholar
  8. Burns BR (1993) Fire-induced dynamics of Araucaria araucanaNothofagus antartica forest in the southern Andes. J Biogeogr 20:669–685. doi: 10.2307/2845522 CrossRefGoogle Scholar
  9. De Castillo A, Gavidia I, Perez-Bermudez P, Segura J (1995) PEG precipitation, a required step for PCR amplification of DNA from wild plants of Digitalis obscura L. Biotechniques 18:766–768Google Scholar
  10. Demesure B, Sodzi N, Petit R (1995) A set of universal primers for amplification of polymorphic non-coding regions of mitochondrial and chloroplast DNA in plants. Mol Ecol 4:129–131. doi: 10.1111/j.1365-294X.1995.tb00201.x CrossRefPubMedGoogle Scholar
  11. Demesure B, Comps B, Petit R (1996) Chloroplast DNA Phylogeography of the Common Beech (Fagus sylvatica L.) in Europe. Evol Int J Org Evol 50:2515–2520. doi: 10.2307/2410719 Google Scholar
  12. Duminil J, Pemonge MH, Petit R (2002) A set of 35 consensus primer pairs amplifying genes and introns of plant mitochondrial DNA. Mol Ecol Notes 2:428–430. doi: 10.1046/j.1471-8286.2002.00263.x CrossRefGoogle Scholar
  13. Dumolin S, Demesure B, Petit R (1995) Inheritance of chloroplast and mitochondrial genomes in pedunculate oak investigated with an efficient PCR method. Theor Appl Genet 91:1256. doi: 10.1007/BF00220937 CrossRefGoogle Scholar
  14. Dumolin-Lapègue S, Pemonge MH, Petit R (1997) An enlarged set of consensus primers for the study of organelle DNA in plants. Mol Ecol 6:393–397. doi: 10.1046/j.1365-294X.1997.00193.x CrossRefPubMedGoogle Scholar
  15. Dupanloup J, Schneider S, Excoffier L (2002) A simulated annealing approach to define the genetic structure of populations. Mol Ecol 11:2571–2581. doi: 10.1046/j.1365-294X.2002.01650.x CrossRefPubMedGoogle Scholar
  16. Echt CS, DeVerno L, Anzidei M, Vendramin GG (1998) Chloroplast microsatellites reveal population genetic diversity in red pine, Pinus resinosa Ait. Mol Ecol 7:307–316. doi: 10.1046/j.1365-294X.1998.00350.x CrossRefGoogle Scholar
  17. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188. doi: 10.1111/j.1365-294X.2007.03659.x CrossRefPubMedGoogle Scholar
  18. El Mousadik A, Petit R (1996) Chloroplast DNA phylogeography of the argan tree of Morocco. Mol Ecol 5:547–555. doi: 10.1046/j.1365-294X.1996.00123.x CrossRefPubMedGoogle Scholar
  19. Eriksson O, Ehrlen J (2001) Landscape fragmentation and the viability of plant populations. In: Silvertown J, Antonovics J (eds) Integrating ecology and evolution in a spatial context. Blackwell Science, Oxford, pp 157–175Google Scholar
  20. Excoffier L, Smouse P, Quattro J (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  21. Farjon A, Page C (1999) Conifers: status survey and conservation action plan. IUCN/SSC Conifer Specialist Group, CambridgeGoogle Scholar
  22. Flint R, Fidalgo F (1964) Glacial geology of the east flank of the Argentine Andes between latitude 39°10′S and latitude 41°20′S. Geol Soc Am Bull 75:335–352. doi: 10.1130/0016-7606(1964)75[335:GGOTEF]2.0.CO;2 CrossRefGoogle Scholar
  23. Flint R, Fidalgo F (1969) Glacial drift in the eastern Argentine Andes between latitude 41°10′S and latitude 43°10′S. Geol Soc Am Bull 80:1043–1052. doi: 10.1130/0016-7606(1969)80[1043:GDITEA]2.0.CO;2 CrossRefGoogle Scholar
  24. Gallo L, Izquierdo F, Sanguinetti LJ (2004) Araucaria araucana forest genetic resources in Argentina. In: Vinceti B, Amaral W, Meilleur B (eds) Challenges in managing forest genetic resources for livelihoods: examples from Argentina and Brazil. IPGRI, Rome, pp 105–131Google Scholar
  25. Gomez A, Vendramin G, Gonzales-Martínez S, Alía R (2005) Genetic diversity and differentiation of two Mediterranean pines (Pinus halepensis Mill. and Pinus pinaster Ait.) along a latitudinal cline using chloroplast microsatellite markers. Divers Distrib 11:257–263. doi: 10.1111/j.1366-9516.2005.00152.x CrossRefGoogle Scholar
  26. Gregorius HR (1991) Gene conservation and the preservation of adaptability. In: Seitz A, Loeschcke V (eds) Species conservation: a population—biological approach. Birkhäuser Verlag, Basel, pp 31–47Google Scholar
  27. Grivet D, Heinze B, Vendramin G, Petit R (2001) Genome walking with consensus primers: application to the large single copy region of chloroplast DNA. Mol Ecol Notes 1:345–349. doi: 10.1046/j.1471-8278.2001.00107.x CrossRefGoogle Scholar
  28. Gugerli F, Sperisen C, Büchler U et al (2001) The evolutionary split of Pinaceae from other conifers: evidence from an intron loss and a multigene phylogeny. Mol Phylogenet Evol 21:167–175. doi: 10.1006/mpev.2001.1004 CrossRefPubMedGoogle Scholar
  29. Hampe A, Petit R (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467. doi: 10.1111/j.1461-0248.2005.00739.x CrossRefGoogle Scholar
  30. Hanski I, Simberloff D (1997) The Metapopulation approach, its history, conceptual domain and application to conservation. In: Hanski I, Gilpin ME (eds) Metapopulation biology. Academic Press, Inc, New York, pp 5–26CrossRefGoogle Scholar
  31. Hartl D, Clark A (1988) Principles of population genetics, 2nd edn. Sinauer Associates, Inc. Publishers, USAGoogle Scholar
  32. Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638PubMedGoogle Scholar
  33. Heinze B (2007) A database of PCR primers for the chloroplast genomes of higher plants. Plant Methods 3:1–7. doi: 10.1186/1746-4811-3-4 CrossRefGoogle Scholar
  34. Heuertz M, Hausman J-F et al (2004) Nuclear microsatellites reveal contrasting patterns of genetic structure between western and southeastern european populations of the common ash (Fraxinus excelsior L). Evol Int J Org Evol 58:976–988Google Scholar
  35. Heusser C, Lowell T, Heusser L, Hauser A, Björn G (1996) Full-glacial-late-glacial paleoclimate of the Southern Andes: evidence from pollen, beetle and glacial records. J Quat Sci 11:173–184. doi: 10.1002/(SICI)1099-1417(199605/06)11:3<173::AID-JQS237>3.0.CO;2-5 CrossRefGoogle Scholar
  36. Heusser CJ, LE Heusser, Lowell TV (1999) Paleoecology of the Southern Chilean Lake District—Isla Grande de Chiloe‚ during middle-late llanquihue glaciation and deglaciation. Geogr Ann 81 A:231–284CrossRefGoogle Scholar
  37. Hollin JT, Schilling DH (1981) Late Wiscosin—Weichselian Mountain Glaciers and Small Ice Caps. In: Denton GH, Hughes TJ (eds) The last great ice sheets. John Wiley & Sons, New York, pp 179–206Google Scholar
  38. Kaur D, Bhatnagar S (1984) Fertilization and formation of neocytoplasm in Agathis robusta. Phytomorphology 34:56–60Google Scholar
  39. Kershaw AP, McGlone MS (1995) The Quaternary history of the southern conifers. In: Enright NJ, Hill RS (eds) Ecology of the southern conifers. Melbourne University Press, Melbourne, pp 30–63Google Scholar
  40. Koonjul P, Brandt W, Farrant J, Lindsey G (1999) Inclusion of polyvinylpyrrolidone in the polymerase chain reaction reverses the inhibitory effects of polyphenolic contamination of RNA. Nucleic Acids Res 27:915–916. doi: 10.1093/nar/27.3.915 CrossRefPubMedGoogle Scholar
  41. Lara A, Rutherford P, Montory C et al (1999) Mapeo de la Eco-región de los bosques Valdivianos. Bol Tecnico Fundacion Vida Silvestre Buenos Aires Argent 51:1–27Google Scholar
  42. Liepelt S, Kuhlenkamp V, Anzidei M, Vendramin GG, Ziegenhagen B (2001) Pitfalls in determining size homoplasy of microsatellite loci. Mol Ecol Notes 1:332–335. doi: 10.1046/j.1471-8278.2001.00085.x CrossRefGoogle Scholar
  43. Liepelt S, Bialozyt R, Ziegenhagen B (2002) Wind-dispersed pollen mediates postglacial gene flow among refugia. Proc Natl Acad Sci USA 99:14590–14594. doi: 10.1073/pnas.212285399 CrossRefPubMedGoogle Scholar
  44. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  45. Marchelli P, Gallo L (2004) The combined role of glaciation and hybridization in shaping the distribution of genetic variation in a Patagonian southern beech. J Biogeogr 31:451–460Google Scholar
  46. Marchelli P, Gallo L (2006) Multiple ice-age refugia in a southern beech of South America as evidenced by chloroplast DNA markers. Conserv Genet 7:591–603. doi: 10.1007/s10592-005-9069-6 CrossRefGoogle Scholar
  47. Marchelli P, Gallo L, Scholz F, Ziegenhagen B (1998) Chloroplast DNA markers revealed a geographical divide across Argentinean southern beech Nothofagus nervosa (Phil.) Dim. et Mil. distribution area. Theor Appl Genet 97:642–646. doi: 10.1007/s001220050940 CrossRefGoogle Scholar
  48. Markgraf V, Romero E, Villagran C (1996) History and paleoecology of South American Nothofagus forests. In: Veblen T, Hill R, Read J (eds) The ecology and biogeography of Nothofagus forests. Yale University Press, New Haven, pp 354–386Google Scholar
  49. Messier W, Li SH, Stewart CB (1996) The birth of microsatellites. Nature 381:483. doi: 10.1038/381483a0 CrossRefPubMedGoogle Scholar
  50. Montané J (1968) Paleo-indian remains from Laguna de Tagua Tagua, Central Chile. Science 161:1137–1138. doi: 10.1126/science.161.3846.1137 CrossRefPubMedGoogle Scholar
  51. Moreno PI (1997) Vegetation and climate near Lago Llanquihue in the Chilean Lake District between 20, 200 and 9, 500 14 C yr BP. J Quat Sci 12:485–500. doi: 10.1002/(SICI)1099-1417(199711/12)12:6<485::AID-JQS330>3.0.CO;2-4 CrossRefGoogle Scholar
  52. Morgante M, Felice N, Vendramin GG (1998) Analysis of hypervariable chloroplast microsatellites in Pinus halepensis reveals a dramatic genetic bottleneck. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman & Hall, London, pp 407–412Google Scholar
  53. Palmer J (1992) Mitochondrial DNA in plant systematics: applications and limitations. In: Soltis PS, Soltis DE, Doyle JJ (eds) Molecular systematics of plants. Springer, Berlin, pp 36–49Google Scholar
  54. Palmer J, Stein D (1986) Conservation of chloroplast genome structure among vascular plants. Curr Genet 10:823–833. doi: 10.1007/BF00418529 CrossRefGoogle Scholar
  55. Parducci L, Szmidt AE (1999) PCR-RFLP analysis of cpDNA in the genus Abies. Theor Appl Genet 98:802–808. doi: 10.1007/s001220051137 CrossRefGoogle Scholar
  56. Pastorino M, Gallo L (2002) Quaternary evolutionary history of Austrocedrus chilensis a cypress native to the Andean-Patagonian Forest. J Biogeogr 29:1167–1178. doi: 10.1046/j.1365-2699.2002.00731.x CrossRefGoogle Scholar
  57. Pastorino MJ, Marchelli P, Milleron M, Soliani C, Gallo LA (2009) The effect of different glaciation patterns over the current genetic variation distribution of the southern beech Nothofagus antarctica (G.Forster) Oersted. Genetica 136:79–88. doi: 10.1007/s10709-008-9314-2 CrossRefPubMedGoogle Scholar
  58. Peakall R, Smouse P (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  59. Peakall R, Ebert D, Scott LJ, Meagher PF, Offord CA (2003) Comparative genetic study confirms exceptionally low genetic variation in the ancient and endangered relictual conifer, Wollemia nobilis (Araucariaceae). Mol Ecol 12:2331–2343. doi: 10.1046/j.1365-294X.2003.01926.x CrossRefPubMedGoogle Scholar
  60. Petit R, Vendramin G (2006) Phylogeography of organelle DNA in plants: an introduction. In: Weiss S, Ferrand N (eds) Phylogeography of Southern European Refugia, evolutionary perspectives on the origins and conservation of European biodiversity. Springer Press, Amsterdam, pp 23–97Google Scholar
  61. Petit R, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855. doi: 10.1046/j.1523-1739.1998.96489.x CrossRefGoogle Scholar
  62. Petit R, Duminil J, Fineschi S, Hampe A, Salvini D, Vendramin GG (2005) Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Mol Ecol 14:689–701. doi: 10.1111/j.1365-294X.2004.02410.x CrossRefPubMedGoogle Scholar
  63. Pons O, Petit R (1995) Estimation, variance and optimal sampling of gene diversity I. Haploid locus. Theor Appl Genet 90:462–470. doi: 10.1007/BF00221991 CrossRefGoogle Scholar
  64. Powell W, Morgante M, McDevitt R, Vendramin GG, Rafalsky JA (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population geneties of pines. Proc Natl Acad Sci USA 92:7759–7763. doi: 10.1073/pnas.92.17.7759 CrossRefPubMedGoogle Scholar
  65. Premoli AC, Kitzberger T, Veblen TT (2000) Isozyme variation and recent biogeographical history of the long-lived conifer Fitzroya cupressoides. J Biogeogr 27:251–260. doi: 10.1046/j.1365-2699.2000.00402.x CrossRefGoogle Scholar
  66. Pupko T, Graur D (1999) Evolution of microsatellites in the yeast Saccharomyces cerevisiae: role of length and number of repeated units. J Mol Evol 48:313–316CrossRefPubMedGoogle Scholar
  67. Rabassa J, Clapperton CM (1990) Quaternary glaciations of the Southern Andes. Quat Sci Rev 9:153–174. doi: 10.1016/0277-3791(90)90016-4 CrossRefGoogle Scholar
  68. Ribeiro M, Plomion C, Petit R, Vendramin G, Szmidt A (2001) Variation in chloroplast single-sequence repeats in Portuguese maritime pine (Pinus pinaster Ait). Theor Appl Genet 102:97–103. doi: 10.1007/s001220051623 CrossRefGoogle Scholar
  69. Robledo-Arnuncio JJ, Alia R, Gil L (2004) Increased selfing and correlated paternity in a small population of a predominantly outcrossing conifer, Pinus sylvestris. Mol Ecol 13:2567–2577. doi: 10.1111/j.1365-294X.2004.02251.x CrossRefPubMedGoogle Scholar
  70. Rose O, Falush D (1998) A threshold size for microsatellite expansion. Mol Biol Evol 15:613–615PubMedGoogle Scholar
  71. Ruiz E, González F, Torres-Diaz C et al (2007) Genetic diversity and differentiation within and among Chilean populations of Araucaria araucana (Araucariaceae) based on allozyme variability. Taxon 56:1221–1228CrossRefGoogle Scholar
  72. Sanguinetti L, Maresca L, Gonzalez Peñalba M, Chauchard L, Lozano L (2002) Producción bruta de semillas de Araucaria araucana. Internal Report Lanin National ParkGoogle Scholar
  73. Schlögl PS, Souza AP, Nodari RO (2007) PCR-RFLP analysis of non-coding regions of cpDNA in Araucaria angustifolia (Bert.) O. Kuntze. Genet Mol Biol 30:423–427. doi: 10.1590/S1415-47572007000300020 CrossRefGoogle Scholar
  74. Scott LJ, Sheperd MJ, Nikles DG, Henry RJ (2005) Low efficiency of pseudotestcross mapping design was consistent with limited genetic diversity and low heterozygosity in hoop pine (Araucaria cunninghamii, Araucariaceae). Tree Genet Genomes 1:124–134. doi: 10.1007/s11295-005-0022-0 CrossRefGoogle Scholar
  75. Soranzo N, Provan J, Powell W (1999) An example of mitochondrial length variation in the mitochondrial genome of conifers. Genome 42:158–161. doi: 10.1139/gen-42-1-158 CrossRefPubMedGoogle Scholar
  76. Sperisen C, Büchler U, Mátyás C (1998) Genetic Variation of Mitochondrial DNA Reveals Subdivision of Norway Spruce (Picea abies (L.) Karst.). In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman & Hall, London, pp 413–417Google Scholar
  77. Stefenon V, Nodari R, Guerra M (2004) Genética e conservação de Araucaria angustifolia: III. Protocolo de extração de DNA e capacidade informativa de marcadores RAPD para análise da diversidade genética em populações naturais. Biotemas 17:47–63Google Scholar
  78. Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Biol 17:1105–1109. doi: 10.1007/BF00037152 CrossRefPubMedGoogle Scholar
  79. Tang S, Dai W, Li M et al (2008) Genetic diversity of relictual and endangered plant Abies ziyuanensis (Pinaceae) revealed by AFLP and SSR markers. Genetica 133:21–30. doi: 10.1007/s10709-007-9178-x CrossRefPubMedGoogle Scholar
  80. Templeton AR, Robertson RJ, Brisson J, Strasburg J (2001) Disrupting evolutionary processes: the effect of the habitat fragmentation on collared lizards in the Missouri Ozarks. Proc Natl Acad Sci USA 98:5426–5432. doi: 10.1073/pnas.091093098 CrossRefPubMedGoogle Scholar
  81. Vendramin GG, Ziegenhagen B (1997) Characterization and inheritance of polymorphic plastid microsatellites in Abies. Genome 40:857–864. doi: 10.1139/g97-811 CrossRefPubMedGoogle Scholar
  82. Vendramin GG, Lelli L, Rossi P, Morgante M (1996) A set of primers for the amplification of 20 chloplast microsatellites in Pinaceae. Mol Ecol 5:595–598. doi: 10.1111/j.1365-294X.1996.tb00353.x CrossRefPubMedGoogle Scholar
  83. Vendramin GG, Anzidei M, Madaghiele A, Bucci G (1998) Distribution of genetic diversity in Pinus pinaster Ait. as revealed by chloroplast microsatellites. Theor Appl Genet 97:456–463. doi: 10.1007/s001220050917 CrossRefGoogle Scholar
  84. Vendramin GG, Degen B, Petit R, Anzidei M, Madaghiele A, Ziegenhagen B (1999) High level of variation at Abies alba chloroplast microsatellite loci in Europe. Mol Ecol 8:1117–1126. doi: 10.1046/j.1365-294x.1999.00666.x CrossRefGoogle Scholar
  85. Vendramin GG, Anzidei M, Madaghiele A, Sperisen C, Bucci G (2000) Chloroplast microsatellite analysis reveals the presence of population subdivision in Norway spruce (Picea abies K.). Genome 43:68–78. doi: 10.1139/gen-43-1-68 CrossRefPubMedGoogle Scholar
  86. Villagran C (1991) Historia de los bosques templados del sur de Chile durante el Tardiglacial y Postglacial. Rev Chil Hist Nat 64:447–460Google Scholar
  87. Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058. doi: 10.1073/pnas.84.24.9054 CrossRefPubMedGoogle Scholar
  88. Xu X, Peng M, Xu X (2000) The direction of microsatellite mutations is dependent upon allele length. Nat Genet 24:396–399. doi: 10.1038/74238 CrossRefPubMedGoogle Scholar
  89. Young A, Boyle T (2000) Forest fragmentation. In: Young A, Boshier D, Boyle T (eds) Forest conservation genetics. Principles and practice. CSIRO Publishing-CABI Publishing, United Kingdom, pp 123–134Google Scholar
  90. Ziegenhagen B, Scholz F, Madaghiele A, Vendramin GG (1997) Chloroplast microsatellites as markers for paternity analysis in Abies alba. Can J For Res 28:317–321. doi: 10.1139/cjfr-28-2-317 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • P. Marchelli
    • 1
    • 2
  • C. Baier
    • 3
    • 4
  • C. Mengel
    • 3
  • B. Ziegenhagen
    • 3
  • L. A. Gallo
    • 1
  1. 1.Unidad de Genética Ecológica y Mejoramiento ForestalINTA EEA BarilocheBarilocheArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Conservation Biology, Faculty of BiologyPhilipps-University of MarburgMarburgGermany
  4. 4.Section of Taxonomy and Evolutionary BiologyLeibniz-Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany

Personalised recommendations