Conservation Genetics

, Volume 11, Issue 3, pp 897–906 | Cite as

Management units of brown trout from Galicia (NW: Spain) based on spatial genetic structure analysis

  • Román Vilas
  • C. Bouza
  • J. Castro
  • A. López
  • P. Martínez
Research article


Population genetic structure approaches offer the possibility of defining management units in conservation activities of species. The genetic structure of the brown trout Salmo trutta in Galicia (NW Spain) was investigated by using microsatellites. We determined genetic variation across 10 microsatellite loci of 901 individuals from 30 geographical populations representing 18 river basins. The analysis of the spatial distribution of the genetic variation by using different methods clearly revealed strong genetic differentiation among two groups of populations living in the studied area. This result is concordant with previous work using allozymes and mtDNA markers, and confirms a secondary contact among two highly differentiated evolutionary lineages in Miño Basin. Although both lineages might be locally adapted, results suggest that they hybridize at the middle course of the river. The brown trout from the Upper Miño Basin belongs to the previously described Duero lineage, an Iberian endemism threatened by introgression with other Atlantic forms. The results support the recognition of the Upper Miño Basin as a particular biotic region in Galicia. This study illustrates how a multidisciplinary approach in spatial genetic analysis contributes to the delineation of conservation units as conspecific metapopulations.


Genetic structure Microsatellites Brown trout Conservation genetics Management units 


  1. Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229PubMedGoogle Scholar
  2. Arenillas-Parra M, Sáenz Ridruejo C (1987) Guía Física de España. 3. Los Ríos. Alianza, MadridGoogle Scholar
  3. Arias J, Sánchez L, Martínez P (1995) Low stocking incidence in brown trout populations from northwestern Spain monitored by LDH-5* diagnostic marker. J Fish Biol 47:170–176. doi:10.1111/j.1095-8649.1995.tb06053.x CrossRefGoogle Scholar
  4. Belkhir K (2004) GENETIX v.4.05. Laboratoire Genome, Populations, Interactions. CNRS UMR 5000, Université de Montpellier II, Montpellier, France. Available from
  5. Bouza C, Arias J, Castro J, Sánchez L, Martínez P (1999) Genetic structure of brown trout, Salmo trutta L., at the southern limit of the distribution range of the anadromous form. Mol Ecol 8:1–11. doi:10.1046/j.1365-294x.1999.00794.x CrossRefGoogle Scholar
  6. Bouza C, Castro J, Sánchez L, Martínez P (2001) Allozymic evidence of parapatric differentiation of brown trout (Salmo trutta L.) within an Atlantic river basin of the Iberian Peninsula. Mol Ecol 10:1455–1469. doi:10.1046/j.1365-294X.2001.01272.x CrossRefPubMedGoogle Scholar
  7. Bouza C, Vilas R, Castro J, Martínez P (2008) Mitochondrial haplotype variability of brown trout populations from Northwestern Iberian Peninsula, a secondary contact area between lineages. Conserv Genet 9:917–920. doi:10.1007/s10592-007-9398-8 CrossRefGoogle Scholar
  8. Castro J, Rodríguez S, Pardo BG, Sánchez L, Martínez P (2001) Population analysis of an unusual NOR-site polymorphism in brown trout (Salmo trutta L.). Heredity 86:291–302. doi:10.1046/j.1365-2540.2001.00834.x CrossRefPubMedGoogle Scholar
  9. Corander J, Martinen P (2006) Bayesian identification of admixture events using multilocus molecular markers. Mol Ecol 15:2833–2843PubMedCrossRefGoogle Scholar
  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  11. Dakin EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509. doi:10.1038/sj.hdy.6800545 CrossRefPubMedGoogle Scholar
  12. Estoup A, Presa P, Krieg F, Vaidan D, Guyomard R (1993) (CT) (N) and (GT) (N) microsatellites. A new class of genetic markers for Salmo trutta L. (brown trout). Heredity 71:488–496CrossRefPubMedGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  14. Ferguson A (1989) Genetic differences among brown trout, Salmo trutta, stocks and their importance for the conservation and management of the species. Freshw Biol 21:35–46. doi:10.1111/j.1365-2427.1989.tb01346.x CrossRefGoogle Scholar
  15. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi:10.1046/j.1365-294x.2001.01190.x CrossRefPubMedGoogle Scholar
  16. Gharbi K, Gautier A, Danzmann RG, Gharbi S, Sakamoto T, Hoyheim B, Taggart JB, Cairney M, Powell R, Krieg F, Okamoto N, Ferguson MM, Holm LE, Guyomard R (2006) A linkage map for brown trout (Salmo trutta): chromosome homologies and comparative genome organization with other salmonid fish. Genetics 172:2405–2419. doi:10.1534/genetics.105.048330 CrossRefPubMedGoogle Scholar
  17. Giuffra E, Guyomard R, Forneris G (1996) Phylogenetic relationships and introgression patterns between incipient parapatric species of Italian brown trout (Salmo trutta L. complex). Mol Ecol 5:207–220. doi:10.1111/j.1365-294X.1996.tb00308.x Google Scholar
  18. Goudet J (1999) PCAGEN, a computer package with performs principal component analysis (PCA) on gene frequency data. Available from
  19. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from
  20. Hanski I, Gilpin M (1997) Metapopulation biology: ecology, genetics, and evolution. Academic Press, LondonGoogle Scholar
  21. Harley EH (2001) AGARst. A program for calculating allele frequencies, G ST and R ST from microsatellite data. University of Cape Town, South AfricaGoogle Scholar
  22. Hedrick PW (2001) Conservation genetics: where are we know? Trends Ecol Evol 16:629–636. doi:10.1016/S0169-5347(01)02282-0 CrossRefGoogle Scholar
  23. Hermida M, San Miguel E, Bouza C, Castro J, Martínez P (2008) Morphological variation in a secondary contact of Atlantic brown trout (Salmo trutta) from Iberian Peninsula. Genet Mol Biol (in press)Google Scholar
  24. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service v. 3.0.1. BMC Genet 6:13. Available from doi:10.1186/1471-2156-6-13
  25. Jost L (2008) G ST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026. doi:10.1111/j.1365-294X.2008.03887.x CrossRefPubMedGoogle Scholar
  26. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analyses and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150 CrossRefPubMedGoogle Scholar
  27. Laikre L, Antunes A, Alexandrino P (1999) Conservation genetic management of brown trout (Salmo trutta) in Europe. In: Laikre L et al (eds) “Troutconcert”: EU Fair CT97–3882. Stockholm University, SwedenGoogle Scholar
  28. Langella O (2002) POPULATIONS 1.2.26. Logiciel de génétique de populations. Laboratoire populations, génétique et évolution, CNRS UPR 9034, Gif-sur-Yvette. France. Available from
  29. Machordom A, Suárez J, Almodóvar A, Bautista JM (2000) Mitochondrial haplotype variation and phylogeography of Iberian brown trout populations. Mol Ecol 9:1325–1338. doi:10.1046/j.1365-294x.2000.01015.x CrossRefGoogle Scholar
  30. Martínez P, Arias J, Castro J, Sánchez L (1993) Differential stocking incidence in brown trout (Salmo trutta) populations from Northwestern Spain. Aquaculture 114:203–216. doi:10.1016/0044-8486(93)90296-B CrossRefGoogle Scholar
  31. Martínez P, Bouza C, Castro J, Hermida M, Pardo BG, Sánchez L (2007) Analysis of a secondary contact between divergent lineages of brown trout Salmo trutta L. from Duero basin using microsatellites and mtDNA RFLPs. J Fish Biol 71:195–213. doi:10.1111/j.1095-8649.2007.01551.x CrossRefGoogle Scholar
  32. Martínez P, Castro J, Pardo BG, Bouza C, Hermida M, Vilas R (2009) High NOR-site variation associated to a secondary contact in brown trout from Iberian Peninsula. Genetica. doi: 10.1007/s10709-008-9342-y Google Scholar
  33. McMeel OM, Hoey EM, Ferguson A (2001) Partial nucleotide sequences, and routine typing by polymerase chain reaction-restriction fragment length polymorphism, of the brown trout (Salmo trutta) lactate dehydrogenase, LDH-C1*90 and *100 alleles. Mol Ecol 10:29–34. doi:10.1046/j.1365-294X.2001.01166.x CrossRefPubMedGoogle Scholar
  34. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  35. Palm S, Laikre L, Jorde PE, Ryman N (2003) Effective population size and temporal genetic change in stream resident brown trout. Conserv Genet 4:249–264. doi:10.1023/A:1024064913094 CrossRefGoogle Scholar
  36. Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16. doi:10.1016/j.tree.2006.09.003 CrossRefPubMedGoogle Scholar
  37. Presa P, Guyomard R (1996) Conservation of microsatellites in three species of salmonids. J Fish Biol 49:1326–1329Google Scholar
  38. Presa P, Pardo BG, Martínez P, Bernatchez L (2002) Phylogeographic congruence between mtDNA and rDNA ITS markers in brown trout. Mol Biol Evol 19:2161–2175PubMedGoogle Scholar
  39. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact test and ecumenicism. J Hered 86:248–249Google Scholar
  40. Rice W (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225. doi:10.2307/2409177 Google Scholar
  41. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  42. Sambrook J, Fritsh EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory press, New YorkGoogle Scholar
  43. Sanz N, García-Marín JL, Pla C (2000) Divergence of brown trout (Salmo trutta) within glacial refugia. Can J Fish Aquat Sci 57:2201–2210. doi:10.1139/cjfas-57-11-2201 CrossRefGoogle Scholar
  44. Sanz N, Araguas RM, Fernández R, Vera M, García-Marín JL (2009) Efficiency of markers and methods for detecting hybrids and introgression in stocked populations. Conserv Genet 10:225–236. doi:10.1007/s10592-008-9550-0 CrossRefGoogle Scholar
  45. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  46. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution Int J Org Evolution 38:1358–1370. doi:10.2307/2408641 Google Scholar
  47. Wright S (1931) Evolution in Mendelian populations. Genetics 16:395–420Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Román Vilas
    • 1
  • C. Bouza
    • 1
  • J. Castro
    • 1
  • A. López
    • 1
  • P. Martínez
    • 1
  1. 1.Departamento de Xenética, Facultade de VeterinariaUniversidade de Santiago de CompostelaLugoSpain

Personalised recommendations