Advertisement

Conservation Genetics

, Volume 11, Issue 3, pp 1227–1230 | Cite as

Eighteen novel microsatellite markers for the greater long-tailed hamster (Tscherskia triton)

  • Chuanhai Li
  • Jingping Dong
  • Zhenlong Xiao
  • Zhibin Zhang
Technical note

Abstract

Eighteen polymorphic microsatellite markers were developed for the greater long-tailed hamster (Tscherskia triton), a species of interest across northern China. The expected heterozygosity at these loci ranges from 0.6444 to 0.9196, with the observed allele numbers varying from 6 to 23. All loci conformed to Hardy–Weinberg equilibrium and no pair displayed linkage disequilibrium after a Bonferroni correction. These markers should prove useful for studies of population structure, kinship, social structure and other interesting issues of this important species.

Keywords

Greater long-tailed hamster Tscherskia triton Microsatellite Genetic markers 

Notes

Acknowledgments

This project was supported by the Key Innovative Research Programs of the Chinese Academy of Sciences (No. KSCX2-YW-N-06) and the National Basic Program of the Ministry of Science and Technology (No. 2007CB109100). We are grateful to Fusheng Wang for collecting samples and to Professors Shiliang Zhou and Ming Li for technical guidance in the laboratory.

References

  1. Blouin MS (2003) DNA-based methods for pedigree reconstruction and kinship analysis in natural populations. Trends Ecol Evol 18:503–511. doi: 10.1016/S0169-5347(03)00225-8 CrossRefGoogle Scholar
  2. Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  3. Hamilton MB, Pincus EL, Di-Fiore A, Fleischer RC (1999) Universal linker and ligation procedures for construction of genomic DNA libraries enriched for microsatellites. Biotechniques 27:500–507PubMedGoogle Scholar
  4. Luo ZX, Chen W, Gao W (2000) Fauna Sinica Mammalia in China. Science Press, Beijing (in Chinese)Google Scholar
  5. Raymond M, Rousset F (1995) GENEPOP (Version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  6. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi: 10.2307/2409177 CrossRefGoogle Scholar
  7. Ryman N, Palm S, André C, Carvalho GR, Dahlgren TG, Jorde PE, Laikre L, Larsson LC, Palmé A, Ruzzante DE (2006) Power for detecting genetic divergence: differences between statistical methods and marker loci. Mol Ecol 15:2031–2045. doi: 10.1111/j.1365-294X.2006.02839.x CrossRefPubMedGoogle Scholar
  8. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  9. Song MJ, Zhang ZB, Neumann K, Gattermann R (2005) Sex-biased dispersal of greater long-tailed hamster (Tscherskia triton) revealed by microsatellites. Can J Zool 83:773–779CrossRefGoogle Scholar
  10. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  11. Wang SQ, Yang HF, Hao SS (1996) Activity range, activity rhythm and food preference in rat-like hamsters (Cricetulus triton). Chin J Zool 31:28–31Google Scholar
  12. Wang YQ, Zhang ZB, Xu LX (2002) The genetic diversity of central and peripheral populations of rat-like hamster (Cricetulus triton). Chin Sci Bull 47:201–206. doi: 10.1360/02tb9048 CrossRefGoogle Scholar
  13. Xie JY, Zhang ZB (2005) Mitochondrial DNA phylogeography of populations of Cricetulus triton in the North China Plain. J Mammal 86:833–840. doi: 10.1644/1545-1542(2005)086[0833:MDPOPO]2.0.CO;2 CrossRefGoogle Scholar
  14. Xie JY, Zhang ZB (2006) Genetic diversity decreases as population density declines: implications of temporal variation in mitochondrial haplotype frequencies in a natural population of Tscherskia triton. Integr Zool 1:188–193. doi: 10.1111/j.1749-4877.2006.00035.x CrossRefGoogle Scholar
  15. Xu LX, Song MJ, Guo Y, Kong FH, Zhang ZB (2007) The highly polymorphic microsatellite markers for the greater long-tailed hamster (Tscherskia triton). Mol Ecol Notes 7:617–619. doi: 10.1111/j.1471-8286.2006.01651.x CrossRefGoogle Scholar
  16. Yang HF, Wang SQ, Hao SS (1996) An investigation on populations of rat-like hamsters (Cricetulus triton), their predication and the integrated management in the non-irrigated area on Huabei Plain, China. In: Wang ZW, Zhang ZB (eds) Theory and practice of rodent pest management. Science Press, Beijing, pp 229–246Google Scholar
  17. Zhang Z, Yang HF, Wang SQ, Wang FS, Hao SS, Cao XP, Zhang JX, Xu YX, Yang WP, Jiao XM (1998) Ecology and management strategy of greater long-tailed hamster. In: Zhang Z, Wang Z (eds) Ecology and management of rodent pests in agriculture. Ocean Press, Beijing, pp 1–19Google Scholar
  18. Zhang JX, Zhang ZB, Wang ZW (2001) Scent, social status, and reproductive condition in rat-like hamsters (Cricetulus triton). Physiol Behav 74:415–420. doi: 10.1016/S0031-9384(01)00506-6 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Chuanhai Li
    • 1
  • Jingping Dong
    • 1
    • 2
  • Zhenlong Xiao
    • 1
    • 2
  • Zhibin Zhang
    • 1
  1. 1.State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of ZoologyChinese Academy of SciencesBeijingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina

Personalised recommendations