Conservation Genetics

, Volume 11, Issue 3, pp 835–854 | Cite as

Genetic diversity in a narrowly endemic, recently described dusky salamander, Desmognathus folkertsi, from the southern Appalachian Mountains

  • Jessica A. Wooten
  • Carlos D. Camp
  • Leslie J. Rissler
Research Article

Abstract

To understand patterns of biodiversity and whether populations and species are in decline, the detection and description of cryptic biodiversity are essential. Salamanders are of particular conservation interest because they potentially harbor many undescribed species due to morphological conservatism. The dusky salamanders, genus Desmognathus, are a species-rich group in which morphologically cryptic species are especially common. Using a portion of the mitochondrial genome and amplified fragment length polymorphism (AFLP), we investigated the genetic diversity of the highly endemic, stream-dwelling salamander, Desmognathus folkertsi, across its known range in the Appalachian Mountains. Mitochondrial data revealed three well-supported lineages, one of which consisted of only one specimen; however, AFLP data were not congruent with the mitochondrial data. There was 1.11% uncorrected sequence divergence between the two well-sampled lineages. Desmognathus folkertsi exhibited 4.29% sequence divergence from the closely related D. quadramaculatus. Isolation by distance was found for both the AFLP and mitochondrial data when stream distance, rather than when straight-line (i.e., geographic) distance was used. Although genetic diversity is often partitioned by river drainages in freshwater taxa, we did not observe such a pattern in D. folkertsi. We propose that human-mediated dispersal by bait-bucket release may augment natural gene flow via aquatic dispersal across streams. Because this species was only recently discovered, the full extent of the geographic range is unknown. Therefore, an ecological niche model, using climate variables and the Maxent algorithm, was used to determine whether additional regions may be suitable for the species. The model predicted a small range limited to extreme southwestern North Carolina and extreme northeastern Georgia. We suggest future surveys be focused in these regions.

Keywords

Amphibian AFLP Conservation Phylogeography Plethodontidae 

Notes

Acknowledgments

This research was supported by the help and advice of many friends and colleagues. S. Eagle, W. Van Devender, A. Van Devender, M. Chadwick, S. Parker, Z. Felix, B. Sutton, D. Merritt, J. Hodgson, S. Fields, J. Humphries, J. Waldron, R. Makowsky, C. Makowsky, W. Smith, and C. Cox helped in the field. W. Holznagel, L. Tolley-Jordan, and E. Toorens provided assistance with the laboratory work and AFLP fragment analysis. P. Bradford extracted the stream distances for each locality. T. Lamb provided valuable comments that significantly improved the manuscript. All salamander research was approved by the Institutional Animal Care and Use Committee (IACUC) protocol number 05-242-3 to LJR at The University of Alabama. This research was funded by: a NSF DEB 0414033 awarded to LJR, American Museum of Natural History grant awarded to JAW, and The University of Alabama.

References

  1. Adams DC, Rohlf FJ (2000) Ecological character displacement in Plethodon: biomechanical differences found from a geometric morphometric study. Proc Natl Acad Sci USA 97:4106–4111. doi:10.1073/pnas.97.8.4106 PubMedCrossRefGoogle Scholar
  2. Agrimonti C, Bianchi R, Bianchi A, Ballero M, Poli F, Marmiroli N (2007) Understanding biological conservation strategies: a molecular-genetic approach to the case of myrtle (Myrtus communis L.) in two Italian regions: Sardinia and Calabria. Conserv Genet 8:385–396. doi:10.1007/s10592-006-9177-y CrossRefGoogle Scholar
  3. Albach DC, Schonswetter P, Tribsch A (2006) Comparative phylogeography of the Veronica alpine complex in Europe and North America. Mol Ecol 15:3269–3286. doi:10.1111/j.1365-294X.2006.02980.x PubMedCrossRefGoogle Scholar
  4. Anderson RP, Martínez-Meyer E (2004) Modeling species’ geographic distributions for preliminary conservation assessments: an implementation with the spiny pocket mice (Heteromys) of Ecuador. Biol Conserv 116:167–179. doi:10.1016/S0006-3207(03)00187-3 CrossRefGoogle Scholar
  5. Anderson RP, Gomez-Laverde M, Peterson AT (2002) Geographical distributions of spiny pocket mice in South America: insights from predictive models. Glob Ecol Biogeogr 11:131–141. doi:10.1046/j.1466-822X.2002.00275.x CrossRefGoogle Scholar
  6. Andrade IM, Mayo SJ, Van Den Berg C, Fay MF, Chester M, Lexer C, Kirkup D (2007) A preliminary study of genetic variation in populations of Monstera adansonii var. klotzschiana (Araceae) from north-east Brazil, estimated with AFLP molecular markers. Ann Bot (Lond) 100:1143–1154. doi:10.1093/aob/mcm200 CrossRefGoogle Scholar
  7. Assefa A, Labuschagne MT, Viljoen CD (2007) AFLP analysis of genetic relationships between barley (Hordeum vulgare L.) landraces from north Shewa in Ethiopia. Conserv Genet 8:273–280. doi:10.1007/s10592-006-9167-0 CrossRefGoogle Scholar
  8. Beamer DA, Lamb T (2008) Dusky salamanders (Desmognathus, Plethodontidae) from the coastal plain: multiple independent lineages and their bearing on the molecular phylogeny of the genus. Mol Phylogenet Evol 47:143–153. doi:10.1016/j.ympev.2008.01.015 PubMedCrossRefGoogle Scholar
  9. Bensch S, Åkesson M (2005) Ten years of AFLP in ecology and evolution: why so few animals? Mol Ecol 14:2899–2914. doi:10.1111/j.1365-294X.2005.02655.x PubMedCrossRefGoogle Scholar
  10. Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2006) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22(3):148–155. doi:10.1016/j.tree.2006.11.004 PubMedCrossRefGoogle Scholar
  11. Blears MJ, De Grandis SA, Lee H, Trevors JT (1998) Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J Ind Microbiol Technol 21:99–114. doi:10.1038/sj.jim.2900537 CrossRefGoogle Scholar
  12. Bonett RM, Kozak KH, Vieites DR, Bare A, Wooten JA, Trauth SE (2007) The importance of comparative phylogeography in diagnosing introduced species: a lesson from the seal salamander, Desmognathus monticola. BMC Ecol 7:7. doi:10.1186/1472-6785-7-7 PubMedCrossRefGoogle Scholar
  13. Burridge CP, Craw D, Waters JM (2006) River capture, range expansion, and cladogenesis: the genetic signature of freshwater vicariance. Evol Int J Org Evol 60:1038–1049Google Scholar
  14. Camp CD (2004) Desmognathus folkertsi Camp, Tilley, Austin, and Marshall. Cat Am Amphib Reptiles 782:1–3Google Scholar
  15. Camp CD, Marshall JL (2006) Reproductive life history of Desmognathus folkertsi (Dwarf Black-bellied Salamander). Southeast Nat 5:669–684. doi:10.1656/1528-7092(2006)5[669:RLHODF]2.0.CO;2 CrossRefGoogle Scholar
  16. Camp CD, Tilley SG, Austin RM Jr, Marshall JL (2002) A new species of black-bellied salamander (Genus Desmognathus) from the Appalachian Mountains of northern Georgia. Herpetologica 58:471–484. doi:10.1655/0018-0831(2002)058[0471:ANSOBS]2.0.CO;2 CrossRefGoogle Scholar
  17. Campbell D, Duchesne P, Bernatchez L (2003) AFLP utility for population assignment studies: analytical investigation and empirical comparison with microsatellites. Mol Ecol 12:1979–1991. doi:10.1046/j.1365-294X.2003.01856.x PubMedCrossRefGoogle Scholar
  18. Carey C, Alexander MA (2003) Climate change and amphibian declines: is there a link? Divers Distrib 9:111–121. doi:10.1046/j.1472-4642.2003.00011.x CrossRefGoogle Scholar
  19. Carisio L, Cervella P, Palestrini C, DelPero M, Rolando A (2004) Biogeographical patterns of genetic differentiation in dung beetles of the genus Trypocopris (Coleoptera, Geotrupidae) inferred from mtDNA and AFLP analyses. J Biogeogr 31:1149–1162. doi:10.1111/j.1365-2699.2004.01074.x CrossRefGoogle Scholar
  20. Carr DE (1996) Morphological variation among species and populations of salamanders in the Plethodon glutinosus complex. Herpetologica 52:56–65Google Scholar
  21. Casgrain P, Legendre P (2001) The R package for multivariate and spatial analysis, version 4.0 d6—user’s manual. Département de sciences biologiques, Université de Montréal. Available on the WWWeb site <http://www.fas.umontreal.ca/BIOL/legendre/>
  22. Chen P, Wiley EO, McNyset KM (2007) Ecological niche modeling as a predictive tool: silver and bighead carps in North America. Biol Invasions 9:43–51. doi:10.1007/s10530-006-9004-x CrossRefGoogle Scholar
  23. Collins JP, Storfer A (2003) Global amphibian declines: sorting the hypotheses. Divers Distrib 9:89–98. doi:10.1046/j.1472-4642.2003.00012.x CrossRefGoogle Scholar
  24. Costa GC, Wolfe C, Shepard DB, Caldwell JP, Vitt LJ (2008) Detecting the influence of climatic variables on species distributions: a test using GIS niche-based models along a steep longitudinal environmental gradient. J Biogeogr 35:637–646. doi:10.1111/j.1365-2699.2007.01809.x CrossRefGoogle Scholar
  25. Cowling RM, Pressey RL (2001) Rapid plant diversification: planning for an evolutionary future. Proc Natl Acad Sci USA 98:5452–5457. doi:10.1073/pnas.101093498 PubMedCrossRefGoogle Scholar
  26. Creer S, Thorpe RS, Malhotra A, Chou WH, Stenson AG (2004) The utility of AFLPs for supporting mitochondrial DNA phylogeographical analyses in the Taiwanese bamboo viper, Trimeresurus stejnegeri. J Evol Biol 17:100–107. doi:10.1046/j.1420-9101.2003.00642.x PubMedCrossRefGoogle Scholar
  27. Crespi EJ, Rissler LJ, Browne RA (2003) Testing Pleisotcene refugia theory: phylogeographical analysis of Desmognathus wrighti, a high-elevation salamander in the southern Appalachians. Mol Ecol 12:969–984. doi:10.1046/j.1365-294X.2003.01797.x PubMedCrossRefGoogle Scholar
  28. Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54. doi:10.1016/S0006-3207(03)00092-2 CrossRefGoogle Scholar
  29. Davis EB, Koo MS, Conroy C, Patton JL, Moritz C (2008) The California hotspots project: identifying regions of rapid diversification of mammals. Mol Ecol 17:120–138. doi:10.1111/j.1365-294X.2007.03469.x PubMedCrossRefGoogle Scholar
  30. Domínguez-Domínguez O, Martínez-Meyer E, Zambrano L, De L, Pérez-Ponce G (2006) Using ecological-niche modeling as a conservation tool for freshwater species: live-bearing fishes in central Mexico. Conserv Biol 20:1730–1739. doi:10.1111/j.1523-1739.2006.00588.x PubMedCrossRefGoogle Scholar
  31. Ennos RA, French GC, Hollingsworth PM (2005) Conserving taxonomic complexity. Trends Ecol Evol 20:164–168. doi:10.1016/j.tree.2005.01.012 PubMedCrossRefGoogle Scholar
  32. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  33. Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.0: an integrated software package for population genetic analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  34. Ferrier S, Watson G, Pearce J, Drielsma M (2002) Extended statistical approaches to modeling spatial pattern in biodiversity in northeast New South Wales. 1. Species-level modeling. Biodivers Conserv 11:2275–2307. doi:10.1023/A:1021302930424 CrossRefGoogle Scholar
  35. Finn DS, Theobald DM, Black WC, Poff NL (2006) Spatial population genetic structure and limited dispersal in a Rocky Mountain alpine stream insect. Mol Ecol 15:3553–3566. doi:10.1111/j.1365-294X.2006.03034.x PubMedCrossRefGoogle Scholar
  36. Frankel OH (1974) Genetic conservation: our evolutionary responsibility. Genetics 78:53–65PubMedGoogle Scholar
  37. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking, and background selection. Genetics 147:915–925PubMedGoogle Scholar
  38. Fu YX, Li WH (1993) Statistical tests of neutrality of mutations. Genetics 133:693–709PubMedGoogle Scholar
  39. Garcia AF, Benchimol LL, Barbosa AMM, Geraldi IO, Souza CL, deSouza AP (2004) Comparison of RAPD, RFLP, AFLP, and SSR markers for diversity studies in tropical maize inbred lines. Genet Mol Biol 27:579–588. doi:10.1590/S1415-47572004000400019 CrossRefGoogle Scholar
  40. García-París M, Wake DB (2000) Molecular phylogenetic analysis of relationships of the tropical salamander genera Oedipina and Nototriton, with descriptions of a new genus and three new species. Copeia 2000:42–70. doi:10.1643/0045-8511(2000)2000[0042:MPAORO]2.0.CO;2 CrossRefGoogle Scholar
  41. Garoia F, Guarniero I, Grifoni D, Marzola S, Tinti F (2007) Comparative analysis of AFLPs and SSRs efficiency in resolving population genetic structure of Mediterranean Solea vulgaris. Mol Ecol 16:1377–1387. doi:10.1111/j.1365-294X.2007.03247.x PubMedCrossRefGoogle Scholar
  42. Giannasi N, Thorpe RS, Malhotra A (2001) The use of amplified fragment length polymorphism in determining species trees at fine taxonomic levels: analysis of a medically important snake, Trimeresurus albolabris. Mol Ecol 10:419–426. doi:10.1046/j.1365-294x.2001.01220.x PubMedCrossRefGoogle Scholar
  43. Gienapp P, Teplitsky C, Alho JS, Mills A, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178. doi:10.1111/j.1365-294X.2007.03413.x PubMedCrossRefGoogle Scholar
  44. Gower JC (1971) A general coefficient of similarity and some of its properties. Biometrics 27:857–871. doi:10.2307/2528823 CrossRefGoogle Scholar
  45. Graham CH, Ron SR, Santos JC, Schneider CJ, Moritz C (2004) Integrating phylogenies and environmental niche models to explore speciation mechanisms in dendrobatid frogs. Evol Int J Org Evol 58:1781–1793Google Scholar
  46. Graham CH, Smith TB, Languy M (2005) Current and historical factors influencing patterns of species richness and turnover of birds in the Gulf of Guinea Highlands. J Biogeogr 32:1371–1384Google Scholar
  47. Graham CH, Moritz C, Williams SE (2006) Habitat history improves prediction of biodiversity in rainforest fauna. Proc Natl Acad Sci USA 103:632–636. doi:10.1073/pnas.0505754103 PubMedCrossRefGoogle Scholar
  48. Hanken J, Wake DB, Savage JM (2007) Montane salamanders from the Coast Rica-Panama border region, with descriptions of two new species of Bolitoglossa. Copeia 2007:556–565. doi:10.1643/0045-8511(2007)2007[556:MSFTCR]2.0.CO;2 CrossRefGoogle Scholar
  49. Highton R, Peabody RB (2000) Geographic protein variation and speciation in the salamanders of the Plethodon jordani and Plethodon glutinosus complexes in the southern Appalachian Mountains with the description of four new species. In: Bruce RC, Jaeger RG, Houck LD (eds) The biology of Plethodontid salamanders. Kluwer Academic/Plenum Publishers, New YorkGoogle Scholar
  50. Hijmans RF, Guarino L, Cruz M, Rojas E (2001) Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet Resour Newsl 127:15–19Google Scholar
  51. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. doi:10.1002/joc.1276 CrossRefGoogle Scholar
  52. Hillis DM, Bull JJ (1993) An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Syst Biol 42:182–192. doi:10.2307/2992540 Google Scholar
  53. Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of modern sugarcane cultivar (Saccharum spp.). I. Genome mapping with AFLP markers. Theor Appl Genet 103:84–97. doi:10.1007/s001220000390 CrossRefGoogle Scholar
  54. Huelsenbeck JP, Bollback JP (2001) Empirical and hierarchical Bayesian estimation of ancestral states. Syst Biol 50:351–366. doi:10.1080/106351501300317978 PubMedCrossRefGoogle Scholar
  55. Huelsenbeck JP, Ronquist F (2001) mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/17.8.754 PubMedCrossRefGoogle Scholar
  56. Hutchinson GE (1957) Concluding remarks. Cold Spring Harb Symp Quant Biol 22:415–427Google Scholar
  57. Iguchi K, Matsuura K, McNyset KM, Peterson AT, Scachetti-Pereira R, Powers KA, Vieglais DA, Wiley EO, Yodo T (2004) Predicting invasions of North American basses in Japan using native range data and a genetic. Trans Am Fish Soc 133:845–854. doi:10.1577/T03-172.1 CrossRefGoogle Scholar
  58. Jackson ND (2005) Phylogenetic history, morphological parallelism, and speciation in a complex of Appalachian salamanders (Genus Desmognathus). Thesis, Brigham Young UniversityGoogle Scholar
  59. Jehle R, Sztatecsny M, Wolf JBW, Whitlock A, Hödl W, Burke T (2007) Genetic dissimilarity predicts paternity in the smooth newt (Lissotriton vulgaris). Biol Lett 3:526–528. doi:10.1098/rsbl.2007.0311 PubMedCrossRefGoogle Scholar
  60. Jensen JB, Camp CD (2003) Human exploitation of amphibians: direct and indirect impacts. In: Semlitsch RD (ed) Amphibian conservation. Smithsonian Institution, Washington DCGoogle Scholar
  61. Jensen JB, Waters C (1999) The “spring lizard” bait industry in the state of Georgia, USA. Herpetol Rev 30:20–21Google Scholar
  62. Jockusch EL, Wake DB (2002) Falling apart and merging: diversification of slender salamanders (Plethodontidae: Batrachoseps) in the American West. Biol J Linnaean Soc 76:361–391. doi:10.1111/j.1095-8312.2002.tb01703.x CrossRefGoogle Scholar
  63. Jockusch EL, Yanev EP, Wake DB (2001) Molecular phylogenetic analysis of slender salamanders, genus Batrachoseps (Amphibia: Plethodontidae), from central coastal California with descriptions of four new species. Herpetol Monogr 15:54–99. doi:10.2307/1467038 CrossRefGoogle Scholar
  64. Jones MT, Voss SR, Ptacek MB, Weisrock DW, Tonkyn DW (2006) River drainages and phylogeography: an evolutionary significant lineage of shovel-nosed salamander (Desmognathus marmoratus) in the southern Appalachians. Mol Phylogenet Evol 38:280–287. doi:10.1016/j.ympev.2005.05.007 PubMedCrossRefGoogle Scholar
  65. Kimura M (1983) The neutral theory of molecular evolution. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  66. Kinkead KE, Abbot AG, Otis DL (2007) Genetic variation among Ambystoma breeding populations on the Savannah River site. Conserv Genet 8:281–292. doi:10.1007/s10592-006-9168-z CrossRefGoogle Scholar
  67. Knowles LL, Rihards CL (2005) Importance of genetic drift during Pleistocene divergence as revealed by analyses of genomic variation. Mol Ecol 14:4023–4032. doi:10.1111/j.1365-294X.2005.02711.x PubMedCrossRefGoogle Scholar
  68. Kozak KH, Larson A, Bonett RM, Harmon LJ (2005) Phylogenetic analysis of ecomorphological diversification rates in dusky salamanders (Plethodontidae: Desmognathus). Evol Int J Org Evol 59:2000–2016Google Scholar
  69. Kozak KH, Weisrock DW, Larson A (2006a) Rapid lineage accumulation in a non-adaptive radiation: phylogenetic analysis of diversification rates in eastern North American woodland salamanders (Plethodontidae: Plethodon). Proc R Soc Lond B Biol Sci 273:539–546. doi:10.1098/rspb.2005.3326 CrossRefGoogle Scholar
  70. Kozak KH, Blaine RA, Larson AL (2006b) Gene lineages and eastern North American palaeodrainage basins: phylogeography and speciation in salamanders of the Eurycea bislineata species complex. Mol Ecol 15:191–207. doi:10.1111/j.1365-294X.2005.02757.x PubMedCrossRefGoogle Scholar
  71. Krauss SL (2000) Accurate gene diversity estimates from amplified fragment length polymorphism (AFLP) markers. Mol Ecol 9:1241–1245. doi:10.1046/j.1365-294x.2000.01001.x PubMedCrossRefGoogle Scholar
  72. Larget B, Simon D (1999) Markov chain Monte Carlo algorithms for the Bayesian analysis of phylogenetic trees. Mol Biol Evol 16:750–759Google Scholar
  73. Larson A (1984) Neontological inferences of evolutionary pattern and process in the salamander family Plethodontidae. Evol Biol 17:119–217Google Scholar
  74. Larson A, Wake DB, Maxson LR, Highton R (1981) A molecular phylogenetic perspective on the origins of morphological novelties in the salamanders of the Tribe Plethodontini (Amphibia, Plethodontidae). Evol Int J Org Evol 35:405–422. doi:10.2307/2408190 Google Scholar
  75. Losos JB, Glor RE (2003) Phylogenetic comparative methods and the geography of speciation. Trends Ecol Evol 18:220–227. doi:10.1016/S0169-5347(03)00037-5 CrossRefGoogle Scholar
  76. Lowe A, Harris S, Ashton P (2004) Ecological genetics: design, analysis, and application. Blackwell Science Limited, MaldenGoogle Scholar
  77. Lowe WH, Likens GE, McPeek MA, Buso DC (2006) Linking direct and indirect data on dispersal: isolation by slope in a headwater stream salamander. Ecology 87:334–339. doi:10.1890/05-0232 PubMedCrossRefGoogle Scholar
  78. Lynch M, Milligan BG (1994) Analysis of population genetic structure with RAPD markers. Mol Ecol 3:91–99. doi:10.1111/j.1365-294X.1994.tb00109.x PubMedCrossRefGoogle Scholar
  79. Mace GM, Purvis A (2008) Evolutionary biology and practical conservation: bridging a widening gap. Mol Ecol 17:9–19. doi:10.1111/j.1365-294X.2007.03455.x PubMedCrossRefGoogle Scholar
  80. Makowsky R, Chesser J, Rissler LJ (2009) A striking lack of genetic diversity across the wide-ranging amphibian Grastrophryne carolinensis (Anura: Microhylidae). Genetica 135:169–183PubMedCrossRefGoogle Scholar
  81. Martínez-Solano I, Jockusch EL, Wake DB (2007) Extreme population subdivision throughout a continuous range: phylogeography of Batrachoseps attenuates (Caudata: Plethodontidae) in western North America. Mol Ecol 16:4335–4355. doi:10.1111/j.1365-294X.2007.03527.x PubMedCrossRefGoogle Scholar
  82. Martof BS (1953) The “spring lizard” industry, a factor in salamander distribution and genetics. Ecology 34:436–437. doi:10.2307/1930915 CrossRefGoogle Scholar
  83. Mayden RL (1988) Vicariance biogeography, parsimony, and evolution in North American freshwater fishes. Syst Zool 37:329–355. doi:10.2307/2992197 CrossRefGoogle Scholar
  84. McCranie JR, Espinal MR, Wilson LD (2005) New species of montane salamander of the Bolitoglossa dunni group from northern Comayagua, Honduras (Urodela: Plethodontidae). J Herpetol 39:108–112. doi:10.1670/0022-1511(2005)039[0108:NSOMSO]2.0.CO;2 CrossRefGoogle Scholar
  85. McNyset KM (2005) Use of ecological niche modelling to predict distributions of freshwater fish species in Kansas. Ecol Freshwat Fish 14:243–255. doi:10.1111/j.1600-0633.2005.00101.x CrossRefGoogle Scholar
  86. McPherson JM, Jetz W (2007) Effects of species’ ecology on the accuracy of distribution models. Ecography 30:135–151Google Scholar
  87. Mead LS, Tilley SG, Katz LA (2001) Genetic structure of the Blue Ridge dusky salamander (Desmognathus orestes): inferences from allozymes, mitochondrial DNA, and behavior. Evol Int J Org Evol 55:2287–2302Google Scholar
  88. Mendelson TC, Simons JN (2006) AFLPs resolve cytonuclear discordance and increase resolution among barcheek darters (Percidae: Etheostoma: Catonotus). Mol Phylogenet Evol 41:445–453. doi:10.1016/j.ympev.2006.05.010 PubMedCrossRefGoogle Scholar
  89. Mock KE, Brim-Box JC, Miller MP, Downing ME, Hoeh WR (2004) Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah. Mol Ecol 13:1085–1098. doi:10.1111/j.1365-294X.2004.02143.x PubMedCrossRefGoogle Scholar
  90. Moritz C (2002) Strategies to protect biological diversity and the evolutionary processes that sustain it. Syst Biol 51:238–254. doi:10.1080/10635150252899752 PubMedCrossRefGoogle Scholar
  91. Mueller UG, Wolfenbarger LL (1999) AFLP genotyping and fingerprinting. Trends Ecol Evol 14:389–394. doi:10.1016/S0169-5347(99)01659-6 PubMedCrossRefGoogle Scholar
  92. Mueller RL, Macey JR, Jaekel M, Wake DB, Boore JL (2004) Morphological homoplasy, life history evolution, and historical biogeography of plethodontid salamanders inferred from complete mitochondrial genomes. Proc Natl Acad Sci USA 101:13820–13825. doi:10.1073/pnas.0405785101 PubMedCrossRefGoogle Scholar
  93. Nei M (1972) Genetic distance between populations. Am Nat 106:283–292. doi:10.1086/282771 CrossRefGoogle Scholar
  94. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  95. Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273. doi:10.1073/pnas.76.10.5269 PubMedCrossRefGoogle Scholar
  96. Nicolè F, Tellier F, Vivat A, Till-Bottraud I (2007) Conservation unit status inferred for plants by combining interspecific crosses and AFLP. Conserv Genet 8:1273–1285. doi:10.1007/s10592-006-9277-8 CrossRefGoogle Scholar
  97. Ogden R, Thorpe RS (2002) The usefulness of amplified fragment length polymorphism markers for taxon discrimination across graduated fine evolutionary levels in Caribbean Anolis lizards. Mol Ecol 11:437–445. doi:10.1046/j.0962-1083.2001.01442.x PubMedCrossRefGoogle Scholar
  98. Parra-Olea G, Wake DB (2001) Extreme morphological and ecological homoplasy in tropical salamanders. Proc Natl Acad Sci USA 98:7888–7891. doi:10.1073/pnas.131203598 PubMedCrossRefGoogle Scholar
  99. Pertoldi C, Bijlsma R, Loeschcke V (2007) Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodivers Conserv 16:4147–4163. doi:10.1007/s10531-007-9212-4 CrossRefGoogle Scholar
  100. Phillips SJ (2008) Transferability, sample selection bias and background data in presence-only modeling: a response to Peterson et al. (2007). Ecography 31:272–278. doi:10.1111/j.0906-7590.2008.5378.x CrossRefGoogle Scholar
  101. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. doi:10.1111/j.0906-7590.2008.5203.x CrossRefGoogle Scholar
  102. Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning 69:83–99Google Scholar
  103. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Modell 190:231–259. doi:10.1016/j.ecolmodel.2005.03.026 CrossRefGoogle Scholar
  104. Pizzo A, Roggero A, Palestrini C, Cervella P, DelPero M, Rolando A (2006) Genetic and morphological differentiation patterns between sister species: the case of Onthophagus taurus and Onthophagus illyricus (Coleoptera, Scarabaeidae). Biol J Linnaean Soc 89:197–211. doi:10.1111/j.1095-8312.2006.00674.x CrossRefGoogle Scholar
  105. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818. doi:10.1093/bioinformatics/14.9.817 PubMedCrossRefGoogle Scholar
  106. Pyron RA, Burbrink FT, Guiher TJ (2008) Claims of potential expansion throughout the US by invasive python species are contradicted by ecological niche models. PLoS One 3(8):e2931. doi:10.1371/journal.pone.0002931 PubMedCrossRefGoogle Scholar
  107. Raxworthy CJ, Martínez-Meyer E, Horning N, Nussbaum RA, Schneider GE, Ortega-Huerta MA, Peterson AT (2003) Predicting distributions of known and unknown reptile species in Madagascar. Nature 426:837–841. doi:10.1038/nature02205 PubMedCrossRefGoogle Scholar
  108. Raxworthy C, Ingram C, Rabibisoa N, Pearson R (2007) Applications of ecological niche modeling for species delimitation: a review and empirical evaluation using day geckos (Phelsuma) from Madagascar. Syst Biol 56:907–923. doi:10.1080/10635150701775111 PubMedCrossRefGoogle Scholar
  109. Riberon A, Miaud C, Guyetant R, Taberlet P (2004) Genetic variation in an endemic salamander, Salamandra atra, using amplified fragment length polymorphism. Mol Phylogenet Evol 31:910–914. doi:10.1016/j.ympev.2003.10.016 PubMedCrossRefGoogle Scholar
  110. Ricketts TH, Dinerstein E, Boucher T, Brooks TM, Butchart SHM, Hoffmann M, Lamoreux JF, Morrison J, Parr M, Pilgrim JD, Rodrigues ASL, Sechrest W, Wallace GE, Berlin K, Bielby J, Burgess ND, Church DR, Cox N, Knox D, Loucks C, Luck GW, Master LL, Moore R, Naidoo R, Ridgely R, Schatz GE, Shire G, Strand H, Wettengel W, Wikramanayake E (2005) Pinpointing and preventing imminent extinctions. Proc Natl Acad Sci USA 102:18497–18501. doi:10.1073/pnas.0509060102 PubMedCrossRefGoogle Scholar
  111. Rissler LJ, Apodaca JJ (2007) Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black salamander (Aneides flavipunctatis). Syst Biol 56:924–942. doi:10.1080/10635150701703063 PubMedCrossRefGoogle Scholar
  112. Rissler LJ, Taylor DR (2003) The phylogenetics of desmognathine salamander populations across the southern Appalachians. Mol Phylogenet Evol 27:197–211. doi:10.1016/S1055-7903(02)00405-0 PubMedCrossRefGoogle Scholar
  113. Rissler LJ, Wilbur HM, Taylor DR (2004) The influence of ecology and genetics on behavioral variation in salamander populations across the Eastern Continental Divide. Am Nat 164:201–213. doi:10.1086/422200 PubMedCrossRefGoogle Scholar
  114. Rissler LJ, Hijmans RJ, Graham CH, Moritz C, Wake DB (2006) Phylogeographic lineages and species comparisons in conservation analyses: a case study of California Herpetofauna. Am Nat 167:655–666. doi:10.1086/503332 PubMedCrossRefGoogle Scholar
  115. Rozas J, Rozas R (1999) DnaSP version 3: an integrated program for molecular population genetics and molecular evolution analysis. Bioinformatics 15:174–175. doi:10.1093/bioinformatics/15.2.174 PubMedCrossRefGoogle Scholar
  116. Rozas J, Sánchez-DelBarrio JC, Messegyer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359 PubMedCrossRefGoogle Scholar
  117. Schuh RT (2000) Biological systematics: principles and applications. Cornell University Press, IthacaGoogle Scholar
  118. Seman K, Bjornstad A, Stedje B (2003) Genetic diversity and differentiation in Ethiopian populations of Phytolacca dodecandra as revealed by AFLP and RAPD analysis. Genet Resour Crop Evol 50:649–661. doi:10.1023/A:1024447404492 CrossRefGoogle Scholar
  119. Shaffer HB, Pauly GB, Oliver JC, Trenham PC (2004) The molecular phylogenetics of endangerment: cryptic variation and historical phylogeography of the California tiger salamander, Ambystoma californiense. Mol Ecol 13:3033–3049. doi:10.1111/j.1365-294X.2004.02317.x PubMedCrossRefGoogle Scholar
  120. Shaw K (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: what mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127. doi:10.1073/pnas.242585899 PubMedCrossRefGoogle Scholar
  121. Slatkin M (1993) Isolation by distance in equilibrium and nonequilibrium populations. Evol Int J Org Evol 47:264–279. doi:10.2307/2410134 Google Scholar
  122. Soberón J, Peterson AT (2005) Interpretation of models of fundamental ecological niche and species’ distributional areas. Biodivers Inform 2:1–10Google Scholar
  123. Sotiropoulos K, Eleftherakos K, Kalezic′ ML, Legakis A, Polymeni RM (2007) Genetic structure of the alpine newt, Mesotriton alpestris (Salamandridae, Caudata), in the southern limit of its distribution: implications for conservation. Biochem Syst Ecol 36:1–15Google Scholar
  124. Stockman AK, Bond JE (2007) Delimiting cohesion species: extreme population structuring and the role of ecological interchangeability. Mol Ecol 16:3374–3392. doi:10.1111/j.1365-294X.2007.03389.x PubMedCrossRefGoogle Scholar
  125. Stockwell DRB, Peterson AT (2002) Effects of sample size on accuracy of species distribution models. Ecol Modell 148:1–13. doi:10.1016/S0304-3800(01)00388-X CrossRefGoogle Scholar
  126. Stokstad E (2004) Global survey documents puzzling decline of amphibians. Science 306:391. doi:10.1126/science.306.5695.391a PubMedCrossRefGoogle Scholar
  127. Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW (2004) Status and trends of amphibian declines and extinctions worldwide. Science 306:1783–1786. doi:10.1126/science.1103538 PubMedCrossRefGoogle Scholar
  128. Stuart BL, Inger RF, Voris HK (2006) High level of cryptic species diversity revealed by sympatric lineages of Southeast Asian forest frogs. Biol Lett 2:470–474. doi:10.1098/rsbl.2006.0505 PubMedCrossRefGoogle Scholar
  129. Sullivan JP, Lavoue S, Arnegard ME, Hopkins CD (2004) AFLPs resolve phylogeny and reveal mitochondrial introgression within a species flock of African electric fish (Mormyroidea: Teleostei). Evol Int J Org Evol 58:825–841Google Scholar
  130. Swofford D (2002) paup*: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, SunderlandGoogle Scholar
  131. Tajima F (1983) Evolutionary relationship of DNA sequences in finite populations. Genetics 105:437–460PubMedGoogle Scholar
  132. Tajima F (1989) Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123:597–601PubMedGoogle Scholar
  133. Tilley SG, Mahoney MJ (1996) Patterns of genetic differentiation in salamanders of the Desmognathus ochrophaeus complex (Amphibia: Plethodontidae). Herpetol Monogr 10:1–42. doi:10.2307/1466979 CrossRefGoogle Scholar
  134. Tilley SG, Eriksen RL, Katz LA (2008) Systematics of dusky salamanders, Desmognathus (Caudata: Plethodontidae), in the mountain and Piedmont regions of Virginia and North Carolina, USA. Zool J Linn Soc 152:115–130Google Scholar
  135. Titus TA, Larson A (1996) Molecular phylogenetics of desmognathan salamanders (Caudata: Plethodontidae): a reevaluation of evolution in ecology. Syst Biol 45:451–472. doi:10.2307/2413525 CrossRefGoogle Scholar
  136. Van Cutsem P, du Jardin P, Boutte C, Beauwens T, Jacqmin S, Vekemans X (2003) Distinction between cultivated and wild chicory gene pools using AFLP markers. Theor Appl Genet 107:713–718. doi:10.1007/s00122-003-1296-y PubMedCrossRefGoogle Scholar
  137. Vekemans X (2002) AFLP-SURV version 1.0. Distributed by the author. Laboratorie de Génétique et Ecologie Végétale, Université Libre de Bruxelles, BelgiumGoogle Scholar
  138. Vekemans X, Beauwens T, Lemaire M, Roldan-Ruiz I (2002) Data from amplified fragment length polymorphism (AFLP) markers show indication of size homoplasy and of a relationship between degree of homoplasy and fragment size. Mol Ecol 11:139–151. doi:10.1046/j.0962-1083.2001.01415.x PubMedCrossRefGoogle Scholar
  139. Vieites DR, Min MS, Wake DB (2007) Rapid diversification and dispersal during periods of global warming by plethodontid salamanders. Proc Natl Acad Sci USA 104:19903–19907. doi:10.1073/pnas.0705056104 PubMedCrossRefGoogle Scholar
  140. Voss SR, Schaffer HB (1997) Adaptive evolution via a major gene effect: paedomorphosis in the Mexican Axolotl. Proc Natl Acad Sci USA 94:14185–14189. doi:10.1073/pnas.94.25.14185 PubMedCrossRefGoogle Scholar
  141. Voss P, Hogers R, Bleeker M, Reijans M, Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414. doi:10.1093/nar/23.21.4407 CrossRefGoogle Scholar
  142. Wake DB, Roth G, Wake MH (1983) On the problem of stasis in organismal evolution. J Theor Biol 101:211–224. doi:10.1016/0022-5193(83)90335-1 CrossRefGoogle Scholar
  143. Wang Z, Baker AJ, Hill GE, Edwards SV (2003) Reconciling actual and inferred population histories in the House Finch (Carpodacus mexicanus) by the AFLP analysis. Evol Int J Org Evol 57:2852–2862Google Scholar
  144. Whitlock A, Sztatecsny M, Jehle R (2006) AFLPs: genetic markers for paternity studies in newts (Triturus vulgaris). Amphib-Reptil 27:126–129. doi:10.1163/156853806776052029 CrossRefGoogle Scholar
  145. Wiens JJ, Engstrom TN, Chipinndale PT (2006) Rapid diversification, incomplete isolation, and the “speciation clock” in North American salamanders (Genus Plethodon): testing the hybrid swarm hypothesis of rapid radiation. Evol Int J Org Evol 60:2585–2603Google Scholar
  146. Wilcox TP, Zwickl DJ, Heath TA, Hillis DM (2002) Phylogenetic relationships of the dwarf boas and a comparison of Bayesian and bootstrap measures of phylogenetic support. Mol Phylogenet Evol 25:361–371. doi:10.1016/S1055-7903(02)00244-0 PubMedCrossRefGoogle Scholar
  147. Wilding CS, Butlin RK, Grahame J (2001) Differential gene exchange between parapatric morphs of Littorina saxatilis detected using AFLP markers. J Evol Biol 14:611–619. doi:10.1046/j.1420-9101.2001.00304.x CrossRefGoogle Scholar
  148. Wooten JA, Rissler LJ (2005) Geographic distribution: Desmognathus folkertsi. Herpetol Rev 36:461Google Scholar
  149. Wooten JA, Tolley-Jordan LR (2009) Validation of phylogenetic signals in amplified fragment length data: testing the utility and reliability in closely related taxa. BMC Res Notes 2:26. doi:10.1186/1756-0500-2-26 PubMedCrossRefGoogle Scholar
  150. Wright S (1931) Evolution of Mendelian populations. Genetics 16:97–159PubMedGoogle Scholar
  151. Wright S (1943) Isolation by distance. Genetics 28:114–156PubMedGoogle Scholar
  152. Wright S (1965) The interpretation of population structure by F-statistics with special regard to systems of mating. Evol Int J Org Evol 19:395–420. doi:10.2307/2406450 Google Scholar
  153. Zhivotovsky LA (1999) Estimating population structure in diploids with multilocus dominant DNA markers. Mol Ecol 8:907–913. doi:10.1046/j.1365-294x.1999.00620.x PubMedCrossRefGoogle Scholar
  154. Zwickl DJ (2006) Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Dissertation, The University of Texas at Austin download URL: www.bio.utexas.edu/faculty/antisense/garli/Garli.html

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jessica A. Wooten
    • 1
    • 3
  • Carlos D. Camp
    • 2
  • Leslie J. Rissler
    • 1
  1. 1.Department of Biological SciencesUniversity of AlabamaTuscaloosaUSA
  2. 2.Department of BiologyPiedmont CollegeDemorestUSA
  3. 3.Franklin UniversityColumbusUSA

Personalised recommendations