Conservation Genetics

, Volume 11, Issue 3, pp 1143–1146

Anonymous nuclear markers for cetacean species

  • A. R. Amaral
  • M. C. Silva
  • L. M. Möller
  • L. B. Beheregaray
  • M. M. Coelho
Technical Note

Abstract

Here we report the development and characterization of 17 anonymous nuclear markers for cetacean species. These markers were isolated from a genomic library built from a common dolphin (genus Delphinus), and tested across several families within Cetacea. An average of 1 SNP per 272 bp was found in 10 anonymous markers screened for polymorphism within the genus Delphinus (total of 6,537 bp sequenced). These markers represent a significant addition to the set of tools used in genetic studies of cetaceans where population and species boundaries have to be inferred in order to implement proper conservation strategies.

Keywords

SNPs Anonymous loci Common dolphins Delphinids 

References

  1. Ballard JWO, Whitlock MC (2004) The incomplete natural history of mitochondria. Mol Ecol 13:729–744. doi:10.1046/j.1365-294X.2003.02063.x CrossRefPubMedGoogle Scholar
  2. Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17:3754–3774PubMedGoogle Scholar
  3. Brumfield RT, Beerli P, Nickerson DA, Edwards SV (2003) The utility of single nucleotide polymorphisms in inferences of population history. Trends Ecol Evol 18:249–256. doi:10.1016/S0169-5347(03)00018-1 CrossRefGoogle Scholar
  4. Caballero S, Jackson J, Mignucci-Giannoni AA, Barrios-Garrido H, Beltran-Pedreros S, Montiel-Villalobos MG, Robertson KM, Baker CS (2008) Molecular systematics of South American dolphins Sotalia: sister taxa determination and phylogenetic relationships, with insights into a multi-locus phylogeny of the Delphinidae. Mol Phylogenet Evol 46:252–268. doi:10.1016/j.ympev.2007.10.015 CrossRefPubMedGoogle Scholar
  5. Han L, Su B, Li WH, Zhao ZM (2008) CpG island density and its correlations with genomic features in mammalian genomes. Genome Biol 9:R79. doi:10.1186/gb-2008-9-5-r79 CrossRefPubMedGoogle Scholar
  6. Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA-sequences. Genetics 111:147–164PubMedGoogle Scholar
  7. Lyons LA, Kehler JS, O’Brien SJ (1999) Development of comparative anchor tagged sequences (CATS) for canine genome mapping. J Hered 90:15–26. doi:10.1093/jhered/90.1.15 CrossRefPubMedGoogle Scholar
  8. Morin PA, Luikart G, Wayne RK (2004) SNPs in ecology, evolution and conservation. Trends Ecol Evol 19:208–216. doi:10.1016/j.tree.2004.01.009 CrossRefGoogle Scholar
  9. Morin PA, Aitken NC, Rubio-Cisneros N, Dizon AE, Mesnick S (2007) Characterization of 18 SNP markers for sperm whale (Physeter macrocephalus). Mol Ecol Notes 7:626–630. doi:10.1111/j.1471-8286.2006.01654.x CrossRefGoogle Scholar
  10. Primmer CR, Borge T, Lindell J, Saetre GP (2002) Single-nucleotide polymorphism characterization in species with limited available sequence information: high nucleotide diversity revealed in the avian genome. Mol Ecol 11:603–612. doi:10.1046/j.0962-1083.2001.01452.x CrossRefPubMedGoogle Scholar
  11. Ray DA (2007) SINEs of progress: mobile element applications to molecular ecology. Mol Ecol 16:19–33. doi:10.1111/j.1365-294X.2006.03104.x CrossRefPubMedGoogle Scholar
  12. Rosenblum EB, Belfiore NM, Moritz C (2007) Anonymous nuclear markers for the eastern fence lizard, Sceloporus undulatus. Mol Ecol Notes 7:113–116. doi:10.1111/j.1471-8286.2006.01547.x CrossRefGoogle Scholar
  13. Rozas J, Sanchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497. doi:10.1093/bioinformatics/btg359 CrossRefPubMedGoogle Scholar
  14. Rozen S, Skaletsky HJ (2000) Primer3 on WWW for general users and for biologist programmars. In: Misener S, Krawetz S (eds) Bioinformatics methods protocols: methods in molecular biology. Humana Press, Totowa, NJ, pp 365–386Google Scholar
  15. Stephens M, Donnelly P (2003) A comparison of Bayesian methods for haplotype reconstruction from population genotype data. Am J Hum Genet 73:1162–1169. doi:10.1086/379378 CrossRefPubMedGoogle Scholar
  16. Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399PubMedGoogle Scholar
  17. Zink RM, Barrowclough GF (2008) Mitochondrial DNA under siege in avian phylogeography. Mol Ecol 17:2107–2121. doi:10.1111/j.1365-294X.2008.03737.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • A. R. Amaral
    • 1
    • 2
  • M. C. Silva
    • 1
  • L. M. Möller
    • 2
    • 3
  • L. B. Beheregaray
    • 2
    • 3
  • M. M. Coelho
    • 1
  1. 1.Centro de Biologia Ambiental, Departamento de Biologia AnimalFaculdade de Ciências da Universidade de LisboaLisbonPortugal
  2. 2.Department of Biological SciencesMacquarie UniversitySydneyAustralia
  3. 3.School of Biological SciencesFlinders UniversityAdelaideAustralia

Personalised recommendations