Conservation Genetics

, 10:1973 | Cite as

Development and characterization of microsatellite loci for Rosa odorata var. gigantea Rehder & E. H. Wilson (Rosaceae)

  • Jing Meng
  • Dezhu Li
  • Tingshuang Yi
  • Junbo Yang
  • Xingfeng Zhao
Technical Note


Eighteen microsatellite markers were developed from Rosa odorata var. gigantea (Rosaceae), including 11 new microsatellite markers and 7 modified microsatellite loci having been developed from other Rosa species. About 27 wild individuals from 3 populations were used to screen polymorphism of these 18 microsatellite makers. The average allele number of these markers was 3.9 per locus, ranging from 2 to 9. The expected and observed heterozygosities varied from 0.2711 to 0.8043 and from 0.0370 to 0.5556, respectively. Cross-species amplification in other eight Rosa species showed their potential use for congeneric species. These microsatellite primers will be used for population genetics studies, constructing genetic linkage maps or locating quantitative trait locus (QTL) of R. odorata var. gigantea and related species.


Rosa odorata var. gigantea Microsatellite Population genetics 



This study was supported by the key national Natural Science Foundation of China (grant no. 40830209) and CAS Innovation Program (grant no. 2007311002). This study was conducted in the Key Laboratory of the Southwest China Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences.


  1. Clarke KR, Gorley RN (2001) PRIMER v5: user manual/tutorial. PRIMER-E Ltd., Plymouth, p 91Google Scholar
  2. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemistry Bull 19:11–15Google Scholar
  3. Gary B (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. doi: 10.1093/nar/27.2.573 CrossRefGoogle Scholar
  4. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  5. Hibrand-Saint Oyant L, Crespel L, Rajapakse S (2007) Genetic linkage maps of rose constructed with new microsatellite markers and locating QTL controlling flowering traits. Tree Genet Genomes 4:11–23. doi: 10.1007/s11295-007-0084-2 CrossRefGoogle Scholar
  6. Kimura T, Nishitani C, Iketani H et al (2006) Development of microsatellite markers in rose. Mol Ecol Notes 6:810–812. doi: 10.1111/j.1471-8286.2006.01352.x CrossRefGoogle Scholar
  7. Ku TC, Robertson KR (2003) Rosa (Rosaceae). In: Wu ZY, Raven PH (eds) Flora of China, vol. 9. Science Press, Beijing; Missouri Botanical Garden Press, St. Louis, pp 371Google Scholar
  8. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  9. Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J Org Evolution 43:223–225. doi: 10.2307/2409177 Google Scholar
  10. Wylie AP (1954) The history of garden roses, part I. J Roy Hort Sci 79:555–571Google Scholar
  11. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi: 10.1046/j.0962-1083.2001.01418.x CrossRefPubMedGoogle Scholar
  12. Zhang LH, Byrne DH, Ballard RE et al (2006) Microsatellite marker development in rose and its application in tetraploid mapping. J Am Soc Hortic Sci 131:380–387. doi: 10.1016/j.scienta.2005.09.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2009

Authors and Affiliations

  • Jing Meng
    • 1
    • 2
  • Dezhu Li
    • 1
  • Tingshuang Yi
    • 1
  • Junbo Yang
    • 1
  • Xingfeng Zhao
    • 3
  1. 1.The Southwest China Germplasm Bank of Wild Species; Key Laboratory of Biodiversity and Biogeography, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
  2. 2.Graduate School of the Chinese Academy of SciencesBeijingChina
  3. 3.Kunming Botanic Garden, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina

Personalised recommendations