Advertisement

Conservation Genetics

, Volume 11, Issue 1, pp 11–20 | Cite as

Genetic structure in an expanding cervid population after population reduction

  • H. HaanesEmail author
  • K. H. Røed
  • Ø. Flagstad
  • O. Rosef
Research Article

Abstract

The Norwegian red deer population (Cervus elaphus) was from the mid eighteenth to the early twentieth century drastically reduced in size and distribution but has the last century expanded both demographically and spatially. We have investigated genetic variation, differentiation and admixture in this spatially expanding ungulate population, using 14 microsatellites. The present genetic structure is moderate to strong with an average F ST = 0.08. Low M-ratios indicate loss of genetic variation in all localities and signals of a recent bottleneck was identified in 14 of 15 localities. Genetic distances between the localities indicate two main routes of dispersal during expansion, from the north–west and south–west, respectively. Bayesian assignment tests verify a break of the dataset in two, and demonstrate 99.9% probability for the existence of five sub-populations, which coincide well with five relict populations described by historic records. Computer simulations suggest that the observed genetic differentiation is recent rather than ancient, and that it may be explained by models of fragmentation or of founder events and subsequent merging rather than by models of recent bottlenecks in some particular demes within an ancient genetic structure.

Keywords

Range expansion Genetic variation Bayesian assignment Red deer Cervus elaphus Bottleneck 

Notes

Acknowledgments

For help providing samples we thank the section for wildlife diseases at the Norwegian national veterinary intitute, Dr. Jon M. Arnemo, Harald Holm, M. Pearson, Halvor Ovastrøm, Oddegeir Hårstad, the hunters that sent us samples, and the game managers in the counties and municipalities of Norway who organised much of the sampling. For help handling samples and in the laboratory we are in debt to Turid Vikøren, Astrid Stovner and Liv Midthjell. For helpful information about the SIMCOAL algorithm and its function we thank Dr. Christian N. K. Anderson at the department of biological sciences, Stanford University.

Supplementary material

10592_2008_9781_MOESM1_ESM.doc (66 kb)
(DOC 66 kb)
10592_2008_9781_MOESM2_ESM.doc (72 kb)
(DOC 72 kb)

References

  1. Ahlèn I (1965) Studies on the red deer, Cervus elaphus L. Scandinavia. III. Ecol investig Viltrevy (Stockh) 3:177–376Google Scholar
  2. Austerlitz F, JungMuller B, Godelle B, Gouyon PH (1997) Evolution of coalescence times, genetic diversity and structure during colonization. Theor Popul Biol 51:148–164. doi: 10.1006/tpbi.1997.1302 CrossRefGoogle Scholar
  3. Baccus R, Ryman N, Smith MH, Reuterwall C, Cameron D (1983) Genetic variability and differentiation of large grazing mammals. J Mammal 64:109–120. doi: 10.2307/1380756 CrossRefGoogle Scholar
  4. Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013PubMedGoogle Scholar
  5. Begon M, Harper JL, Townsend CR (1996) Ecology, individuals, populations and communities, 3rd edn. Blackwell, OxfordGoogle Scholar
  6. Bhebhe E, Kogi J, Holder DA et al (1994) Caprine microsatellite dinucleotide repeat polymorphism at the SR-CRSP-6, SR-CRSP-7, SR-CRSP-8, SR-CRSP-9 and SR-CRSP-10. Anim Genet 25:203PubMedCrossRefGoogle Scholar
  7. Bishop MD, Kappes SM, Keele JW et al (1994) A genetic linkage map for cattle. Genetics 136:619–639PubMedGoogle Scholar
  8. Buchanan FC, Crawford AM (1993) Ovine microsatellites at the OarFCB11, OarFCB128, OarFCB193, OarFCB226 and OarFCB304 loci. Anim Genet 24:145PubMedGoogle Scholar
  9. Chakraborty R, Nei M (1977) Bottleneck effects on average heterozygosity and genetic distance with stepwise mutation model. Evol Int J Org Evol 31:347–356. doi: 10.2307/2407757 Google Scholar
  10. Chakraborty R, Kimmel M (1999) Statistics of microsatellite loci: estimation of mutation rate and pattern of population expansion. In: Goldstein DB, Schlotterer C (eds) Microsatellites; evolution and applications. Oxford University Press, Oxford, pp 139–150Google Scholar
  11. Collett R (1877) Bemerkninger til Norges Pattedyrfauna (in Norwegian). Nyt Magazin for Naturvidenskaberne 22:93–133Google Scholar
  12. Collett R (1909) Hjorten i Norge (Cervus elaphus atlanticus), nogle biologiske meddelelser (in Norwegian). Bergens museums Aarbok 6:9–31Google Scholar
  13. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  14. Di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170. doi: 10.1073/pnas.91.8.3166 CrossRefPubMedGoogle Scholar
  15. Ede AJ, Pierson CA, Crawford AM (1995) Ovine microsatellites at the OarCP9, OarCP16, OarCP20, OarCP21, OarCP23 and OarCP26 loci. Anim Genet 25:129–130Google Scholar
  16. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi: 10.1007/BF00221895 CrossRefGoogle Scholar
  17. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi: 10.1111/j.1365-294X.2005.02553.x CrossRefPubMedGoogle Scholar
  18. Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864. doi: 10.1046/j.1365-294X.2003.02004.x CrossRefPubMedGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: An integrated software package for populations genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  20. Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587PubMedGoogle Scholar
  21. Forchhammer MC, Clutton-Brock TH, Lindstrøm J, Albon SD (2001) Climate and population density induce long-term cohort variation in a northern ungulate. J Anim Ecol 70:721–729. doi: 10.1046/j.0021-8790.2001.00532.x CrossRefGoogle Scholar
  22. Forchhammer MC, Stenseth NC, Post E, Langvatn R (1998) Population dynamics of Norwegian red deer: density-dependence and climatic variation. Proc R Soc Lond B Biol Sci 265:341–350. doi: 10.1098/rspb.1998.0301 CrossRefGoogle Scholar
  23. Friis JA (1874) Tilfjelds i ferierne (in Norwegian). Cammermeyer, ChristianiaGoogle Scholar
  24. Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi: 10.1046/j.1365-294x.2001.01190.x CrossRefPubMedGoogle Scholar
  25. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices. Release 2.9.3.2. Available from http://www.unil.ch/izea/softwares/fstat.html
  26. Gyllensten U, Ryman N, Reuterwall C, Dratch P (1983) Genetic differentiation in four European subspecies of red deer (Cervus elaphus L.). Heredity 51:561–580. doi: 10.1038/hdy.1983.71 CrossRefGoogle Scholar
  27. Haanes H, Rosef O, Veiberg V, Røed KH (2005) Microsatellites with variation and heredity applicable to parentage and population studies of Norwegian red deer (Cervus elaphus atlanticus). Anim Genet 36:454–455. doi: 10.1111/j.1365-2052.2005.01343.x CrossRefPubMedGoogle Scholar
  28. Hartl DL, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer, Sunderland, USGoogle Scholar
  29. Hedrick PW (2000) Genetics of populations. Jones and Bartlett, BostonGoogle Scholar
  30. Hewitt G (2000) The genetic legacy of the Quaternary ice ages. Nature 405:907–913. doi: 10.1038/35016000 CrossRefPubMedGoogle Scholar
  31. Hewitt GM (2001) Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol Ecol 10:537–549. doi: 10.1046/j.1365-294x.2001.01202.x CrossRefPubMedGoogle Scholar
  32. Hulme DJ, Silk JP, Redwin JM, Barendse W, Beh KJ (1994) Ten polymorphic ovine microsatellites. Anim Genet 25:434–435PubMedGoogle Scholar
  33. Ibrahim KM, Nichols RA, Hewitt GM (1996) Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity 77:282–291. doi: 10.1038/hdy.1996.142 CrossRefGoogle Scholar
  34. Ingebrigtsen O (1924) Hjortens utbredelse i Norge (in Norwegian). Bergens Museums Aarbok 1922–1923 Naturvitensk. Raekke 6:1–58Google Scholar
  35. IPCC (2001) Third assessment report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, CambridgeGoogle Scholar
  36. IPCC (2007) Fourth assessment report of the Intergovernmental Panel on Climate Change. http://www.ipcc.ch
  37. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460. doi: 10.1126/science.3420403 CrossRefPubMedGoogle Scholar
  38. Langvatn R (1988) Hjortens utbredelse i Norge-en oversigt. Villreinen 1:1–8 in NorwegianGoogle Scholar
  39. Langvatn R (1998) Hjortens erobring av Norge. In: Brox KH (ed) Brennpunkt natur (in Norwegian). Tapir Cop, Trondheim, pp 49–71Google Scholar
  40. Laval G, Excoffier L (2004) SIMCOAL 2.0: a program to simulate genomic diversity over large recombining regions in a subdivided population with a complex history. Bioinformatics 20:2485–2487. doi: 10.1093/bioinformatics/bth264 CrossRefPubMedGoogle Scholar
  41. Lønnberg E (1906) On the geographic races of red deer in Scandinavia. Arkiv för Zoologi 3:1–19Google Scholar
  42. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  43. Moore SS, Byrne K, Berger KT et al (1994) Characterization of 65 bovine microsatellites. Mamm Genome 5:84–90. doi: 10.1007/BF00292333 CrossRefPubMedGoogle Scholar
  44. Mysterud A, Stenseth NC, Yoccoz NG, Langvatn R, Steinheim G (2001) Nonlinear effects of large-scale climatic variability on wild and domestic herbivores. Nature 410:1096–1099. doi: 10.1038/35074099 CrossRefPubMedGoogle Scholar
  45. Mysterud A, Langvatn R, Yoccoz NG, Stenseth NC (2002) Large-scale habitat variability, delayed density effects and red deer populations in Norway. J Anim Ecol 71:569–580. doi: 10.1046/j.1365-2656.2002.00622.x CrossRefGoogle Scholar
  46. Nei M et al (1975) The bottleneck effect and genetic variability in populations. Evol Int J Org Evol 29:1–10. doi: 10.2307/2407137 Google Scholar
  47. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, NYGoogle Scholar
  48. Nei M (2000) Molecular evolution and phylogenetics. Oxford University Press, New York Google Scholar
  49. Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. II. Gene frequency data. J Mol Evol 19:153–170. doi: 10.1007/BF02300753 CrossRefPubMedGoogle Scholar
  50. Nichols RA, Hewitt GM (1994) The genetic consequences of long-distance dispersal during colonization. Heredity 72:312–317. doi: 10.1038/hdy.1994.41 CrossRefGoogle Scholar
  51. Nunney L (2000) The limits to knowledge in conservation genetics; The value of effective population size. In: Clegg MT, Hecht MK, MacIntyre RJ (eds) The limits to knowledge in conservation genetics. Kluwer, NY, pp 179–194Google Scholar
  52. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  53. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  54. Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diversity in spatially expanding populations. Mol Biol Evol 20:76–86. doi: 10.1093/molbev/msg009 CrossRefPubMedGoogle Scholar
  55. Raymond M, Rousset F (1995) GENEPOP (Version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  56. Rice WR (1989) Analyzing tables of statistical tests. Evol Int J Org Evol 43:223–225. doi: 10.2307/2409177 Google Scholar
  57. Røed KH (1998) Microsatellite variation in Scandinavian Cervidae using primers derived from Bovidae. Hereditas 129:19–25. doi: 10.1111/j.1601-5223.1998.00019.x CrossRefPubMedGoogle Scholar
  58. Røed KH, Midthjell L (1998) Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol Ecol 7:1773–1778PubMedGoogle Scholar
  59. Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial-DNA sequences in stable and exponentially growing populations. Genetics 129:555–562PubMedGoogle Scholar
  60. Soulé ME, Mills S (1992) Conservation genetics and conservation biology: a troubled marriage. In: Sandlund OT, Hindar K, Brown AHD (eds) Conservation of biodiversity for sustainable development. Scandinavian University Press, Oslo, pp 55–69Google Scholar
  61. Wang JL, Caballero A (1999) Developments in predicting the effective size of subdivided populations. Heredity 82:212–226. doi: 10.1038/sj.hdy.6884670 CrossRefGoogle Scholar
  62. Weir BS (1996) Genetic data analysis II: methods for discrete population genetic data. Sinauer, SunderlandGoogle Scholar
  63. Wilson GA, Strobeck C, Wu L, Coffin J (1997) Characterization of microsatellite loci in caribou Rangifer tarandus, and their use in other artiodactyls. Mol Ecol 6:697–699. doi: 10.1046/j.1365-294X.1997.00237.x CrossRefPubMedGoogle Scholar
  64. Wright S (1978) Evolution and the genetics of populations. University of Chicago Press, ChicagoGoogle Scholar
  65. Zachos F, Althoff C, Steynitz Y, Eckert I, Hartl G (2007) Genetic analysis of an isolated red deer (Cervus elaphus) population showing signs of inbreeding depression. Eur J Wildl Res 53:61–67. doi: 10.1007/s10344-006-0065-z CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • H. Haanes
    • 1
    Email author
  • K. H. Røed
    • 1
  • Ø. Flagstad
    • 2
  • O. Rosef
    • 3
  1. 1.Department of Basic Sciences and Aquatic MedicineNorwegian School of Veterinary ScienceOsloNorway
  2. 2.Norwegian Institute for Nature ResearchTrondheimNorway
  3. 3.Department of Environmental and Health StudiesTelemark University CollegeBø in TelemarkNorway

Personalised recommendations