Conservation Genetics

, 10:1511

Characterization of nine microsatellite loci for a globally vulnerable species, Reeves’s Pheasant (Syrmaticus reevesii)

Technical Note

Abstract

Reeves’s Pheasant, Syrmaticus reevesii, is an endemic species of China. Due to habitat loss, poaching and human disturbance, its wild population has been decreased drastically and it is listed as a globally vulnerable species by IUCN/BirdLife/WPA (IUCN 2008). Here, we report nine new polymorphic microsatellite markers isolated from the Reeves’s Pheasant. The number of alleles per locus varies between four and fourteen, with expected heterozygosity ranging from 0.349–0.776 ( = 90). These polymorphic loci provide a valuable tool for future population studies that relate to the conservation of this pheasant.

Keywords

Syrmaticus reevesii Microsatellite Primers Conservation 

References

  1. Cheng TH, Tan YK, Lu TC, Tang CZ, Bao GJ, Li FL (1978) Fauna sinica. aves vol. 4: galliformes. Science Press, BeijingGoogle Scholar
  2. Frankham R, Ballou J, Briscoe D (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  3. Goudet J (2002) FSTAT 2.9.3.2, a program to estimate and test gene diversities and fixation indices. Available: http://www.unil.ch/izea/softwares/fstat.html, Accessed 20 October 2008
  4. Goudet J, Raymond M, de-Meeus T, Rousset F (1996) Testing differentiation in diploid populations. Genetics 144:1933–1940PubMedGoogle Scholar
  5. Hammond RL, Saccheri IJ, Ciofi C, Coote T, Funk SM, McMillan WO, Bayes MK, Taylor E, Bruford MW (1998) Isolation of microsatellite markers in animals. In: Karp A, Isaac PG, Ingram DS (eds) Molecular tools for screening biodiversity. Chapman and Hall, London, pp 279–285Google Scholar
  6. Kijas JM, Fowler JC, Garbett CA, Thomas MR (1994) Enrichment of microsatellites from the citrus genome using biotinylated oligonucleotide sequences bound to streptavidin-coated magnetic particles. Biotechniques 16:656–662PubMedGoogle Scholar
  7. Rice WR (1989) Analyzing tables of statistical tests. Evolution Int J Org Evolution 43:223–225. doi:10.2307/2409177 Google Scholar
  8. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. http://www.microchecker.hull.ac.uk/. Accessed 6 Oct 2008. doi:10.1111/j.1471-8286.2004.00684.x Google Scholar
  9. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi:10.2307/2408641 Google Scholar
  10. Zane L, Bargelloni L, Patarnello T (2002) Strategies for microsatellite isolation: a review. Mol Ecol 11:1–16. doi:10.1046/j.0962-1083.2001.01418.x CrossRefPubMedGoogle Scholar
  11. Zheng G, Wang Q (1998) China red data book of endangered animals (Aves). Science Press, BeijingGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.MOE Key Laboratory for Biodiversity Sciences and Ecological Engineering, College of Life SciencesBeijing Normal UniversityBeijingChina
  2. 2.Computational and Molecular Population Genetics Laboratory, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland

Personalised recommendations