Conservation Genetics

, Volume 10, Issue 6, pp 1707–1718 | Cite as

The effect of habitat fragmentation on finescale population structure of wood frogs (Rana sylvatica)

  • M. Kathrine A. Crosby
  • Lawrence E. Licht
  • Jinzhong Fu
Research Article


We examined the impact of recent anthropogenic habitat fragmentation on the genetic structure of wood frog (Rana sylvatica) breeding sites in Wellington County of Ontario, Canada. In addition to geographic distance (average pairwise distance ~22 km, greatest distance ~50.22 km), four landscape features hypothesized to contribute to genetic differentiation between breeding sites were considered: road density, a major highway (highway 401), canopy cover, and watershed discontinuity. Analysis of data from 396 samples across nine breeding sites using eight microsatellite DNA loci, revealed a small degree of significant genetic structure between breeding sites. The presence of highway 401 and road density were correlated with small but statistically significant structure observed between several groups of sites. One outlier breeding site outside of Wellington County located within the city of Toronto, had significantly lower allelic richness and much larger population differentiation with the Wellington sites. Our data suggest that recent fragmentation has had an effect on wood frog population structure and also demonstrate the importance of dispersal for this species in maintaining levels of genetic diversity.


Wood frog Population structure Habitat fragmentation Microsatellite DNA loci 



Our collection permit was issued by Ontario Ministry of Natural Resource (OMNR), and all animal collecting and handling was performed under an approved animal utility protocol (University of Guelph AUP05R049 to JF). We thank M. Amato, A. Bennett, K. Bi, J. Crowley, D. Noble, J. Urquhart for their field assistance; J. P. Bogart, K. Cottenie, K. S. McCann, T. D. Nudds for their guidance; R. G. Latta, M. E. Sherrard and S. Wright for their helpful comments. This project is supported by an NSERC discovery grant to JF.

Supplementary material

10592_2008_9772_MOESM1_ESM.doc (259 kb)


  1. Austin JD, Lougheed SC, Boag PT (2004) Discordant temporal and geographic patterns in maternal lineages of eastern north American frogs, Rana catesbeiana (Ranidae) and Pseudacris crucifer (Hylidae). Mol Phylogenet Evol 32:799–816. doi: 10.1016/j.ympev.2004.03.006 CrossRefPubMedGoogle Scholar
  2. Balloux F, Goudet J (2002) Statistical properties of population differentiation estimators under stepwise mutation in a finite island model. Mol Ecol 11:771–783. doi: 10.1046/j.1365-294X.2002.01474.x CrossRefPubMedGoogle Scholar
  3. Berven KA (1990) Factors affecting population fluctuations in larval and adult stages of the wood frog (Rana sylvatica). Ecology 71:1599–1608. doi: 10.2307/1938295 CrossRefGoogle Scholar
  4. Berven KA, Grudzien TA (1990) Dispersal in the wood frog (Rana sylvatica), implications for genetic population structure. Evolution 44:2047–2056. doi: 10.2307/2409614 CrossRefGoogle Scholar
  5. Blaustein AR, Wake DB (1995) The puzzle of declining amphibian populations. Sci Am 272:52–57CrossRefGoogle Scholar
  6. Brown GP, Phillips BL, Webb JK, Shine R (2006) Toad on the road: use of roads as dispersal corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biol Conserv 133:88–94. doi: 10.1016/j.biocon.2006.05.020 CrossRefGoogle Scholar
  7. Cardillo M, Mace GM, Jones KE, Bielby J, Bininda-Edmonds ORP, Sechrest W, Orme CDL, Purvis A (2005) Multiple causes of high extinction risk in large mammal species. Science 309:1239–1241. doi: 10.1126/science.1116030 CrossRefPubMedGoogle Scholar
  8. Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631. doi: 10.1093/molbev/msl191 CrossRefPubMedGoogle Scholar
  9. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756. doi: 10.1111/j.1471-8286.2007.01769.x CrossRefGoogle Scholar
  10. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156–159. doi: 10.1016/0003-2697(87)90021-2 CrossRefPubMedGoogle Scholar
  11. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  12. Deguise IE, Kerr JT (2006) Protected areas and prospects for endangered species conservation in Canada. Conserv Biol 20:48–55. doi: 10.1111/j.1523-1739.2005.00274.x CrossRefPubMedGoogle Scholar
  13. Duellman WE, Trueb L (1994) Biology of amphibians. The John Hopkins University Press, Baltimore, USAGoogle Scholar
  14. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes, application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  15. Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.1, an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  16. Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005a) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496. doi: 10.1111/j.1365-294X.2005.02426.x CrossRefPubMedGoogle Scholar
  17. Funk WC, Greene AE, Corn PS, Allendorf FW (2005b) High dispersal in a frog species suggests that it is vulnerable to habitat fragmentation. Biol Lett 1:13–16. doi: 10.1098/rsbl.2004.0270 CrossRefPubMedGoogle Scholar
  18. Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3). Available from http.//www.unilch/izea/softwares/fstat.html (Updated from Goudet (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486)
  19. Government of Ontario (2006) Ontario population projections update 2005–2031. Queen’s Printer for Ontario. Toronto, Ontario, CanadaGoogle Scholar
  20. Guo SW, Thompson EA (1992) Performing the exact test of Hardy–Weinberg proportion for multiple alleles. Biometrics 48:361–372. doi: 10.2307/2532296 CrossRefPubMedGoogle Scholar
  21. Hereid CF, Kinney S (1966) Survival of Alaskan woodfrog (Rana sylvatica) larvae. Ecology 47:1039–1041. doi: 10.2307/1935651 CrossRefGoogle Scholar
  22. Howard RD, Kluge AG (1985) Proximate mechanisms of sexual selection in wood frogs. Evolution 39:260–277. doi: 10.2307/2408361 CrossRefGoogle Scholar
  23. Jakobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806. doi: 10.1093/bioinformatics/btm233 CrossRefPubMedGoogle Scholar
  24. Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance web service. BMC Genet 6:13. doi: 10.1186/1471-2156-6-13
  25. Johansson M, Primmer CR, Sahlsten J, Merilä J (2005) The influence of landscape structure on occurrence, abundance and genetic diversity of the common frog, Rana temporaria. Glob Chang Biol 11:1664–1679. doi: 10.1111/j.1365-2486.2005.1005.x CrossRefGoogle Scholar
  26. Julian SE, King TL (2003) Novel tetranucleotide microsatellite DNA markers for the wood frog Rana sylvatica. Mol Ecol Notes 3:256–258. doi: 10.1046/j.1471-8286.2003.00417.x CrossRefGoogle Scholar
  27. Keller I, Excoffier L, Largiadér CR (2005) Estimation of effective population size and detection of a recent population decline coinciding with habitat fragmentation in a ground beetle. J Evol Biol 18:90–100. doi: 10.1111/j.1420-9101.2004.00794.x CrossRefPubMedGoogle Scholar
  28. Kerr JT, Cihlar J (2003) Land use and cover with intensity of agriculture for Canada from satellite and census data. Glob Ecol Biogeogr 12:161–172. doi: 10.1046/j.1466-822X.2003.00017.x CrossRefGoogle Scholar
  29. Lee-Yaw JA, Irwin JT, Green DM (2008) Postglacial range expansion from northern refugia by the wood frog, Rana sylvatica. Mol Ecol 17:867–884PubMedGoogle Scholar
  30. Li KW, Higginson J, Levy JK (2005) Windsor-Detroit border crossing problem, conflict analysis of the Schwartz report paper presented at systems, man and cybernetics, 2005 IEEE international conference vol 2, pp 1132–1137Google Scholar
  31. Lovett-Doust J, Biernacki M, Pag R, Cha M, Natgunarajah R, Timis G (2003) Effects of land ownership and landscape-level factors on rare-species richness in natural areas of southern Ontario, Canada. Landscape Ecol 18:621–633. doi: 10.1023/A:1026028017696 CrossRefGoogle Scholar
  32. Manel S, Schwartz MK, Luikart G, Taberlet P (2003) Landscape genetics, combining landscape ecology and population genetics. Trends Ecol Evol 18:189–197. doi: 10.1016/S0169-5347(03)00008-9 CrossRefGoogle Scholar
  33. Mazerolle MJ (2004) Amphibian road mortality in response to nightly variations in traffic intensity. Herpetologica 60:45–53. doi: 10.1655/02-109 CrossRefGoogle Scholar
  34. Michalakis Y, Excoffier L (1996) A genetic estimation of population subdivision using distance between alleles with special reference to microsatellite loci. Genetics 142:1061–1064PubMedGoogle Scholar
  35. Milne RJ, Bennett LP (2007) Biodiversity and ecological value of conservation lands in agricultural landscapes of southern Ontario, Canada. Landscape Ecol 22:657–670. doi: 10.1007/s10980-006-9063-5 CrossRefGoogle Scholar
  36. Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787. doi: 10.1007/s10592-005-9056-y CrossRefGoogle Scholar
  37. Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol 10:1087–1100. doi: 10.1046/j.1365-294X.2001.01255.x CrossRefPubMedGoogle Scholar
  38. Ohta T, Kimura M (1973) A model of mutation appropriate to estimate the number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204CrossRefGoogle Scholar
  39. Pérez-Espona S, Pérez-Barbería FJ, McLeod JE, Jiggins CD, Gordon IJ, Pemberton JM (2008) Landscape features affect gene flow of Scottish highland red deer (Cervus elaphus). Mol Ecol 17:981–996. doi: 10.1111/j.1365-294X.2007.03629.x CrossRefPubMedGoogle Scholar
  40. Raymond M, Rousset F (2003) GENEPOP (Web-Version 3.4) Population genetics software for exact tests and ecumenicism. Available from http://wbiomedcurtineduau/genepop
  41. Riley SPD, Pollinger JP, Sauvajot RM, York EC, Bromley C, Fuller TK, Wayne RK (2006) A Southern California freeway is a physical and social barrier to gene flow in carnivores. Mol Ecol 15:1733–1741. doi: 10.1111/j.1365-294X.2006.02907.x CrossRefPubMedGoogle Scholar
  42. Rothermel B (2004) Migratory success of juveniles: a potential constraint for pond-breeding amphibians. Ecol Appl 14:1535–1546. doi: 10.1890/03-5206 CrossRefGoogle Scholar
  43. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  44. Rubbo MJ, Kiesecker JM (2005) Amphibian breeding distribution in an urbanized landscape. Conserv Biol 19:504–511. doi: 10.1111/j.1523-1739.2005.000101.x CrossRefGoogle Scholar
  45. Sanzo D, Hecnar SJ (2006) Effects of road de-icing salt (NaCl) on larval wood frogs (Rana sylvatica). Environ Pollut 140:247–256. doi: 10.1016/j.envpol.2005.07.013 CrossRefPubMedGoogle Scholar
  46. Shepard DB, Kuhns AR, Dreslik MJ, Phillips CA (2008) Roads as barriers to animal movement in fragmented landscapes. Anim Conserv 11:288–296. doi: 10.1111/j.1469-1795.2008.00183.x CrossRefGoogle Scholar
  47. Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462PubMedGoogle Scholar
  48. Spear SF, Peterson CR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564. doi: 10.1111/j.1365-294X.2005.02573.x CrossRefPubMedGoogle Scholar
  49. Spiegelhalter DJ, Best NG, Carlin BP, Van der Linde A (2002) Bayesian measures of model complexity and fit (with discussion). J R Stat Soc B Metab 64:583–616. doi: 10.1111/1467-9868.00353 CrossRefGoogle Scholar
  50. Squire T, Newman RA (2002) Fine-scale population structure in the wood frog (Rana sylvatica) in a northern woodland. Herpetologica 58:119–130. doi: 10.1655/0018-0831(2002)058[0119:FPSITW]2.0.CO;2 CrossRefGoogle Scholar
  51. Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi: 10.1111/j.1471-8286.2004.00684.x CrossRefGoogle Scholar
  52. Vos CC, Chardon JP (1998) Effects of habitat fragmentation and road density on the distribution pattern of the moor frog Rana arvalis. J Appl Ecol 35:44–56. doi: 10.1046/j.1365-2664.1998.00284.x CrossRefGoogle Scholar
  53. Vos CC, Antonisse-De Jong AG, Goedhart PW, Smulders MJM (2001) Genetic similarity as a measure for connectivity between fragmented populations of the moor frog (Rana arvalis). Heredity 86:598–608. doi: 10.1046/j.1365-2540.2001.00865.x CrossRefPubMedGoogle Scholar
  54. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370. doi: 10.2307/2408641 CrossRefGoogle Scholar
  55. Yang RC (1998) Estimating hierarchical F-statistics. Evolution 52:950–956. doi: 10.2307/2411227 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • M. Kathrine A. Crosby
    • 1
  • Lawrence E. Licht
    • 2
  • Jinzhong Fu
    • 1
  1. 1.Department of Integrative BiologyUniversity of GuelphGuelphCanada
  2. 2.Department of BiologyYork UniversityTorontoCanada

Personalised recommendations