Advertisement

Conservation Genetics

, 10:1413 | Cite as

Isolation and characterization of eight microsatellite loci from the endangered plant species Hypochaeris salzmanniana (Asteraceae)

  • Claudete F. Ruas
  • Thiago J. Nakayama
  • M. Á. Ortiz
  • Mayra A. Kuroki
  • Tod F. Stuessy
  • Karin Tremetsberger
  • Eduardo A. Ruas
  • Melissa de Oliveira Santos
  • Salvador Talavera
  • Paulo M. RuasEmail author
Technical Note

Abstract

We report the isolation and characterization of eight microsatellite loci for Hypochaeris salzmanniana, an endangered species endemic to the southwestern coast of Spain and the Atlantic coast of Morocco. A total of 32 alleles were detected across a sample of 45 individuals, with an average number of 4.0 alleles per locus. The average polymorphic information content (PIC) was 0.533 and the observed (H O) and expected (H E) heterozygosity values varied from 0.022 to 0.978 and from 0.434 to 0.759, respectively. Five loci exhibited significant deviation from Hardy–Weinberg equilibrium (≤ 0.001) and three pairs of loci showed significant linkage disequilibrium (≤ 0.01). The eight loci were tested for transferability in three others species (H. arachnoidea, H. glabra, and H. radicata) belonging to the same section of H. salzmanniana. With the exception of locus Hsalz7, all loci successfully amplified in the three species. These preliminary data confirm the usefulness of microsatellite markers for assessing the ecology and genetic structure of H. salzmanniana and to understand the evolution of species within the section Hypochaeris.

Keywords

Endangered species Genetic diversity Hypochaeris salzmanniana Microsatellite markers Transferability 

Notes

Acknowledgments

We sincerely thank C. Marticorena (Concepción) for data on Hypochaeris from the Flora Chilena database. Financial support by the Austrian Science Foundation (FWF; project 15225 to TFS) and the predoctoral grant to M. Á. Ortiz (BES-2003-1506).

References

  1. Billotte N, Lagoda PJR, Risterucci AM, Baurens FC (1999) Microsatellite-enriched libraries: applied methodology for the development of SSR markers in tropical crops. Fruits 54:277–288Google Scholar
  2. Doyle JJ, Doyle Jl (1987) A rapid DNA isolation for small quantities of leaf tissue. Phytochem Bull 19:11–15Google Scholar
  3. Marshall TC, Slate J, Kruuk L, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi: 10.1046/j.1365-294x.1998.00374.x CrossRefPubMedGoogle Scholar
  4. Ortiz MA, Tremetsberger K, Talavera S, Stuessy T, Garcia-Cataño JL (2007) Population structure of Hypochaeris salzmanniana DC. (Asteraceae), an endemic species to the Atlantic coast on both sides of the strait of gibraltar, in relation to quartenary sea level changes. Mol Ecol 16:541–552. doi: 10.1111/j.1365-294X.2006.03157.x CrossRefPubMedGoogle Scholar
  5. Raymond M, Rousset F (1995) Genepop (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  6. Rozen S, Skaletsky HJ (2000) PRIMER 3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols. Humana Press, TotowaGoogle Scholar
  7. Tremetsberger K, Talavera S, Stuessy T, Ortiz MA, Weiss-Schneeweiss H, Kadlec G (2004) Relationship of Hypochaeris salzmanniana (Asteraceae, Lactuceae), an endangered species of Iberian peninsula, to H. radicata and H. glabra and biogeographical implications. Bot J Linn Soc 146:79–95. doi: 10.1111/j.1095-8339.2004.00304.x CrossRefGoogle Scholar
  8. Tremetsberger K, Weiss-Schneeweiss H, Stuessy T, Rosabelle S, Kadlec G, Ortiz MA, Talavera S (2005) Nuclear ribosomal DNA and karyotypes indicate a NW African origin of South American Hypochaeris (Asteraceae, Cichorieae). Mol Phylogenet Evol 35:102–116. doi: 10.1016/j.ympev.2004.12.022 CrossRefPubMedGoogle Scholar
  9. Ware D, Jaiswal P, Ni J, Pan X, Chang K, Clark K, Teytelman L, Schmidt S, Zhao W, Cartinhour S, McCouch S, Stein L (2002) Gramene: a resource for comparative grass genomics. Nucleic Acids Res 30:103–105. doi: 10.1093/nar/30.1.103 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Claudete F. Ruas
    • 1
  • Thiago J. Nakayama
    • 1
  • M. Á. Ortiz
    • 2
  • Mayra A. Kuroki
    • 1
  • Tod F. Stuessy
    • 3
  • Karin Tremetsberger
    • 3
  • Eduardo A. Ruas
    • 4
  • Melissa de Oliveira Santos
    • 5
  • Salvador Talavera
    • 2
  • Paulo M. Ruas
    • 1
    Email author
  1. 1.Departamento de Biologia Geral, Centro de Ciências BiológicasUniversidade Estadual de LondrinaLondrinaBrazil
  2. 2.Departamento de Biología Vegetal y Ecología, Facultad de BiologíaUniversidad de SevillaSevillaSpain
  3. 3.Department of Systematic and Evolutionary Botany, Faculty Center of BotanyUniversity of ViennaViennaAustria
  4. 4.Departamento de Agronomia, Centro de Ciências AgráriasUniversidade Estadual de LondrinaLondrinaBrazil
  5. 5.Centro de Biologia Molecular e Engenharia Genética, Departamento de Genética e EvoluçãoUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations