Conservation Genetics

, 10:1637 | Cite as

Pollen mediated gene flow in a native population of Malus sylvestris and its implications for contemporary gene conservation management

  • Anders Søndergaard LarsenEmail author
  • Erik Dahl Kjær
Research Article


Pollen mediated gene flow was studied in a Danish population of Malus sylvestris with the objective to support the Danish genetic conservation and management activities. A total of 50 mature trees (potential pollen donors) along with 180 seedlings (originating from 12 of the mature trees) were genotyped at 10 nuclear microsatellite loci. Paternity could be established for 46 seedlings, and a pollination distribution curve based on these observations was developed. Further, two indirect methods, Kindist and Twogener were applied for estimation of gene flow parameters. Pollinations were mostly between nearby trees with a median of observed pollination distances of approximately 23 m. However, a few long distance pollinations were observed and this increased the average pollination distance to approximately 60 m. The Kindist analysis of the data seemed to underestimate the average pollination distance as the fat-tailed distribution of the pollen dispersal distribution was not taken into account. Application of the results in a conservation and domestication context is discussed.


Pollen mediated gene flow Malus sylvestris Paternity Twogener Kindist 



Thanks to Krenkerup Gods for access to the forest, to G.B. Hartmanns Forskningsfond for vital financial support, to Ole Kim Hansen for valuable help in the planning phase, to Viggo Jensen for data collection, to Morten Alban Knudsen for cartographic work, and to the reviewers for valuable comments on the manuscript.


  1. Austerlitz F, Smouse PE (2001) Two-generation analysis of pollen flow across a landscape II: relation between Φft, pollen dispersal and interfemale distance. Genetics 157:851–857PubMedGoogle Scholar
  2. Austerlitz F, Smouse PE (2002) Two-generation analysis of pollen flow across a landscape. IV: estimating the dispersal parameter. Genetics 161:355–363PubMedGoogle Scholar
  3. Austerlitz F, Dick CW, Dutech C, Klein EK, Oddou-Muratorio S, Smouse P et al (2004) Using genetic marks to estimate the pollen dispersal curve. Mol Ecol 13:937–954. doi: 10.1111/j.1365-294X.2004.02100.x CrossRefPubMedGoogle Scholar
  4. Barnes RD (1995) The breeding seedling orchard in the multiple population breeding strategy. Silvae Genet 44:81–88Google Scholar
  5. Beekman M, Ratnieks FLW (2000) Long range foraging by the honey-bee, Apis mellifera L. Funct Ecol 14:490–496. doi: 10.1046/j.1365-2435.2000.00443.x CrossRefGoogle Scholar
  6. Burczyk J, Koralewski TE (2005) Parentage versus two-generation analyses for estimating pollen-mediated gene flow in plant populations. Mol Ecol 14:2525–2537. doi: 10.1111/j.1365-294X.2005.02593.x CrossRefPubMedGoogle Scholar
  7. Campbell CS, Greene CW, Dickinson TA (1991) Reproductive biology in subfamily Maloideae (Rosaceae). Syst Bot 16:333–349. doi: 10.2307/2419284 CrossRefGoogle Scholar
  8. Chase MW, Hills HH (1991) Silica gel: an ideal material for field preservation of leaf samples for DNA studies. Taxon 40:215–220. doi: 10.2307/1222975 CrossRefGoogle Scholar
  9. Crow JF, Denniston C (1988) Inbreeding and variance effective population numbers. Evol Int J Org Evol 42:482–495. doi: 10.2307/2409033 Google Scholar
  10. Crow JF, Kimura M (1970) An introduction to population genetics theory. Harper and Row, LondonGoogle Scholar
  11. Dhakal LP, Lillesø JPB, Kjær ED, Jha PK, Aryal HL (2005) Seed sources of agroforestry trees in a farmland context: a guide to tree seed source establishment in Nepal. Environment & Development 1–2005 Forest & Landscape Denmark, Hørsholm, DenmarkGoogle Scholar
  12. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  13. Ellstrand NC (2003) Current knowledge of gene flow in plants: implications for transgene flow. Philos Trans R Soc Lond B Biol Sci 358:1163–1170. doi: 10.1098/rstb.2003.1299 CrossRefPubMedGoogle Scholar
  14. Eriksson G (1995) Which traits should be used to guide sampling for gene resources. In: Baradat Ph, Adams WT, Müller-Starch G (eds) Population genetics and genetic conservation of forest trees. SPB Academic Publishing, Amsterdam, pp 349–358Google Scholar
  15. Eriksson G, Namkoong G, Roberds J (1993) Dynamic gene conservation for uncertain futures. For Ecol Manage 62:15–37. doi: 10.1016/0378-1127(93)90039-P CrossRefGoogle Scholar
  16. Garcia C, Arroyo JM, Godoy JA, Jordano P (2005) Mating patterns, pollen dispersal, and the ecological maternal neighbourhood in a Prunus mahaleb L. population. Mol Ecol 14:1821–1830. doi: 10.1111/j.1365-294X.2005.02542.x CrossRefPubMedGoogle Scholar
  17. Gianfranceschi L, Seglias N, Tarchini R, Komjanc M, Gessler C (1998) Simple sequence repeats for the genetic analysis of apple. Theor Appl Genet 96:1069–1076. doi: 10.1007/s001220050841 CrossRefGoogle Scholar
  18. Graudal L, Kjær ED, Canger S (1995) A systematic approach to conservation of genetic resources of trees and shrubs in Denmark. For Ecol Manage 73:117–134. doi: 10.1016/0378-1127(94)03497-K CrossRefGoogle Scholar
  19. Guilford P, Prakash S, Zhu JM, Rikkerink E, Gardiner S, Bassett H et al (1997) Microsatellites in Malus × domestica (apple): abundance, polymorphism and cultivar identification. Theor Appl Genet 94:249–254. doi: 10.1007/s001220050407 CrossRefGoogle Scholar
  20. Hedrick P (2005) Large variance in reproductive success and the N–e/N ratio. Evol Int J Org Evol 59:1596–1599Google Scholar
  21. Jamieson A, Taylor CS (1997) Comparisons of three probability formulae for parentage exclusion. Anim Genet 28:397–400. doi: 10.1111/j.1365-2052.1997.00186.x CrossRefPubMedGoogle Scholar
  22. Kang KS, Kjaer ED, Lindgren D (2003) Balancing gene diversity and nut production in Corylus avellana collections. Scand J For Res 18:118–126. doi: 10.1080/02827580310003696 CrossRefGoogle Scholar
  23. Kjær ED (1996) Estimation of effective population number in a Picea abies (Karst.) seed orchard based on flower assessment. Scand J For Res 11:111–121CrossRefGoogle Scholar
  24. Kjær ED, Amarel W, Yanchuk A, Graudal L (2004) Strategies for conservation of forest genetic resources. In: FAO , FLD , IPGRI (eds) Forest genetic resources conservation, management. vol 1: overview, concepts, systematic approaches. International Plant Genetic Resources Institute, Rome, pp 5–24Google Scholar
  25. Kugler H (1970) Blütenökologie, 2nd edn. Gustav Fischer Verlag, Stuttgart, GermanyGoogle Scholar
  26. Larsen AS, Asmussen CB, Olrik DC, Coart E, Kjær ED (2006) Hybridization and genetic variation in Danish populations of European crab apple (Malus sylvestris). Tree Genet Genomes 2:86–97. doi: 10.1007/s11295-005-0030-0 CrossRefGoogle Scholar
  27. Larsen AS, Jensen M, Kjær ED (2008) Crossability between wild (Malus sylvestris) and cultivated (M. × domestica) apples—implications for genetic resource management. Silvae Genet 57(3):127Google Scholar
  28. Liebhard R, Gianfranceschi L, Koller B, Ryder CD, Tarchini R, van de Weg E (2002) Development and characterisation of 140 new microsatellites in apple (Malus × domestica Borkh.). Mol Breed 10:217–241. doi: 10.1023/A:1020525906332 CrossRefGoogle Scholar
  29. Lindgren D, Mullin TJ (1998) Relatedness and status number in seed orchard crops. Can J For Res 28:276–283. doi: 10.1139/cjfr-28-2-276 CrossRefGoogle Scholar
  30. Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220PubMedGoogle Scholar
  31. Marshall TC, Slate J, Kruuk LEB, Pemberton JM (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655. doi: 10.1046/j.1365-294x.1998.00374.x CrossRefPubMedGoogle Scholar
  32. McKay JK, Christian CE, Harrison S, Rice KJ (2005) ‘How local is local?’—A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440. doi: 10.1111/j.1526-100X.2005.00058.x CrossRefGoogle Scholar
  33. Namkoong G, Boyle T, Gregorius H-R, Joly H, Savolainen O, Ratnam W et al. (1996) Testing criteria and indicators for assessing the sustainability of forest management: genetic criteria and indicators. CIFOR Working Paper 10Google Scholar
  34. Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  35. Nettancourt D (2001) Incompatibility and incongruity in wild and cultivated plants, 2nd edn. Springer, BerlinGoogle Scholar
  36. Oddou-Muratorio S, Klein EK, Austerlitz F (2005) Pollen flow in the wildservice tree, Sorbus torminalis (L.) Crantz II. Pollen dispersal and heterogeneity in mating success inferred from parent-offspring analysis. Mol Ecol 14:4441–4452PubMedGoogle Scholar
  37. Ødum S (1968) The distribution of trees and shrubs in Denmark. Bot Tidsskr 64:5–118 (in Danish with English abstract and legends)Google Scholar
  38. Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD et al (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533. doi: 10.1046/j.1365-2664.1999.00428.x CrossRefGoogle Scholar
  39. Peakall R, Smouse PE (2006) GenAlEx 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi: 10.1111/j.1471-8286.2005.01155.x CrossRefGoogle Scholar
  40. Robledo-Arnuncio JJ, Austerlitz F, Smouse P (2006) A new method of estimating the pollen dispersal curve independently of effective density. Genetics 173:1033–1045. doi: 10.1534/genetics.105.052035 CrossRefPubMedGoogle Scholar
  41. Robledo-Arnuncio JJ, Austerlitz F, Smouse P (2007) poldisp: a software package for indirect estimation of contemporary pollen dispersal. Mol Ecol Notes 7:763–766. doi: 10.1111/j.1471-8286.2007.01706.x CrossRefGoogle Scholar
  42. Rousset F (2008) genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Res 8:103–106. doi: 10.1111/j.1471-8286.2007.01931.x CrossRefGoogle Scholar
  43. Smouse PE, Peakall R (1999) Spatial autocorrelation analysis of individual multiallele amd multilocus genetic structure. Heredity 82:561–573. doi: 10.1038/sj.hdy.6885180 CrossRefPubMedGoogle Scholar
  44. Smouse PE, Sork VL (2004) Measuring pollen flow in forest trees: an exposition of alternative approaches. For Ecol Manage 197:21–38. doi: 10.1016/j.foreco.2004.05.049 CrossRefGoogle Scholar
  45. Smouse PE, Dyer RJ, Westfall RD, Sork VL (2001) Two-generation analysis of pollen flow across a landscape. I: male gamete heterogeneity among females. Evol Int J Org Evol 55:260–271Google Scholar
  46. Sokal RR, Rohlf FJ (1994) Biometry: the principles and practice of statistics in biological research, 3rd edn. WH Freeman, New YorkGoogle Scholar
  47. Steffan-Dewenter I, Kuhn A (2003) Honeybee foraging in differentially structured landscapes. Proc R Soc Lond B Biol Sci 270:569–575CrossRefGoogle Scholar
  48. Stephan BR, Wagner I, Kleinschmit J (2003) EUFORGEN technical guidelines for genetic conservation and use of wild apple and pear (Malus sylvestris and Pyrus pyraster). International Plant Genetic Resources Institute, RomeGoogle Scholar
  49. Vedel H (1955) Kosteskoven på Lolland. Dansk Dendrologisk Årsskrift pp. 248–257 (in Danish)Google Scholar
  50. Wright S (1978) Evolution and the genetics of populations: variability within and among natural populations, vol 4. The University of Chicago Press, ChicagoGoogle Scholar
  51. Yeh FC, Boyle TJB (1997) Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belg J Bot 129:157Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.Danish Centre for Forest, Landscape and PlanningUniversity of CopenhagenHørsholmDenmark

Personalised recommendations