Conservation Genetics

, 10:1321 | Cite as

Population genetic structure and ancestry of Oncorhynchus mykiss populations above and below dams in south-central California

  • Anthony J. Clemento
  • Eric C. Anderson
  • David Boughton
  • Derek Girman
  • John Carlos GarzaEmail author
Research Article


Genetic analyses of coastal Oncorhynchus mykiss, commonly known as steelhead/rainbow trout, at the southern extreme of their geographic range in California are used to evaluate ancestry and genetic relationships of populations both above and below large dams. Juvenile fish from 20 locations and strains of rainbow trout commonly planted in reservoirs in the five study basins were evaluated at 24 microsatellite loci. Phylogeographic trees and analysis of molecular variance demonstrated that populations within a basin, both above and below dams, were generally each other’s closest relatives. Absence of hatchery fish or their progeny in the tributaries above dams indicates that they are not commonly spawning and that above-barrier fish are descended from coastal steelhead trapped at dam construction. Finally, no genetic basis was found for the division of populations from this region into two distinct biological groups, contrary to current classification under the US and California Endangered Species Acts.


Steelhead Rainbow trout Introgression Anadromy Dams 



Many other people contributed substantially to this work. Primary among them are K. Adams, A. Aguilar, H. Fish, A. Martinez and D. Pearse. Many land owners and agency staff assisted in sampling design and collection, including J. O’Brien and M. Larson, California Department of Fish and Game. K. Perry, M. Lacy, R. Bloom and M. Paul provided useful comments on an early draft.


  1. Aguilar A, Garza JC (2006) A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum). Mol Ecol 15:923–937CrossRefPubMedGoogle Scholar
  2. Banks MA, Blouin MS, Baldwin BA, Rashbrook VK, Fitzgerald HA, Blankenship SM, Hedgecock D (1999) Isolation and inheritance of novel microsatellites in Chinook salmon (Oncorhynchus tshawytscha). J Hered 90:281–288. doi: 10.1093/jhered/90.2.281 CrossRefGoogle Scholar
  3. Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (1996–2004) GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, populations, interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier, FranceGoogle Scholar
  4. Berg WJ, Gall GAE (1988) Gene flow and genetic differentiation among California coastal rainbow trout populations. Can J Fish Aquat Sci 45:122–131Google Scholar
  5. Busby PJ, Wainwright TC, Bryant GJ et al (1996) Status review of west coast steelhead from Washington, Idaho, Oregon, and California. National Oceanographic and Atmospheric Administration Tech. Memo. NMFS-NWFSC-27.
  6. Carlsson J, Nilsson J (2001) Effects of geomorphological structures on genetic differentiation among brown trout populations in a northern boreal river drainage. Trans Am Fish Soc 130:36–45. doi:10.1577/1548-8659(2001)130<0036:EOGSOG>2.0.CO;2CrossRefGoogle Scholar
  7. Castric V, Bonney F, Bernatchez L (2001) Landscape structure and hierarchical genetic diversity in the Brook Charr, Salvelinus fontinalis. Evol Int J Org Evol 55:1016–1028. doi: 10.1554/0014-3820(2001)055[1016:LSAHGD]2.0.CO;2 Google Scholar
  8. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evol Int J Org Evol 32:550–570. doi: 10.2307/2406616 Google Scholar
  9. Chan KMA, Levin SA (2005) Leaky prezygotic isolation and porous genomes: rapid introgression of maternally inherited DNA. Evol Int J Org Evol 59:720–729Google Scholar
  10. Crispo E, Bentzen P, Reznick DR, Kinnison MT, Hendry AP (2006) The relative influence of natural selection and geography on gene flow in guppies. Mol Ecol 15:49–62. doi: 10.1111/j.1365-294X.2005.02764.x CrossRefPubMedGoogle Scholar
  11. Deiner K, Garza JC, Coey R, Girman DJ (2007) Population structure and genetic diversity of trout (Oncorhynchus mykiss) above and below natural and manmade-barriers in the Russian River, California. Conserv Genet 8:437–454. doi: 10.1007/s10592-006-9183-0 CrossRefGoogle Scholar
  12. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction sites. Genetics 131:479–491PubMedGoogle Scholar
  13. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN, version 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  14. Felsenstein J (1993) PHYLIP (Phylogeny Inference Package), version 3.57c. Department of Genetics, University of Washington, Box 357360, Seattle, WA 98105, USAGoogle Scholar
  15. Felsenstein J (2004) Inferring phylogenies. Sinauer Associates, Sunderland, MAGoogle Scholar
  16. Garza JC, Williamson E (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318. doi: 10.1046/j.1365-294x.2001.01190.x CrossRefPubMedGoogle Scholar
  17. Garza JC, Gilbert-Horvath E, Anderson J, Williams T, Spence B, Fish H (2004) Population structure and history of steelhead trout in California. In: Irvine J et al (eds) Workshop on application of stock identification in defining marine distribution and migration of salmon (Honolulu, HI, USA, November 1–2, 2003). North Pacific Anadromous Fish Commission, Technical Report 5:129–131Google Scholar
  18. Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  19. Greenwald GM, Campton DE (2005) Genetic influence of hatchery-origin fish to natural populations of rainbow trout in the Santa Ynez River, California. A synopsis and supplemental evaluation of: Nielsen JL, Zimmerman CE, Olson JB, Wiacek TC, Kretschmer EJ, Greenwald GM, Wenburg JK (2003) Population genetic structure of Santa Ynez River rainbow trout 2001 based on microsatellite and mtDNA analyses. Final report submitted to U.S. Fish and Wildlife Service under intra-agency Agreement No. 11440-1-4000 between the U.S. Fish and Wildlife Service (Ventura, CA) and the U.S. Geological Survey (Anchorage, AK)Google Scholar
  20. Hedrick PW (1999) Perspective: highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318Google Scholar
  21. Jackson TR, Ferguson MM, Danzmann RG, Fishback AG, Ihssen PE, O’Connell M, Crease TJ (1998) Identification of two QTL influencing upper temperature tolerance in three rainbow trout (Oncorhynchus mykiss) half-sib families. Heredity 80:143–151. doi: 10.1046/j.1365-2540.1998.00289.x CrossRefGoogle Scholar
  22. McConnell SK, O’Reilly P, Hamilton L, Wright JM, Bentzen P (1995) Polymorphic microsatellite loci from Atlantic salmon (Salmo salar): genetic differentiation of North American and European populations. Can J Fish Aquat Sci 52:1863–1872. doi: 10.1139/f95-779 CrossRefGoogle Scholar
  23. Morris DB, Richard KR, Wright JM (1996) Microsatellites from rainbow trout (Oncorhynchus mykiss) and their use for genetic studies of salmonids. Can J Fish Aquat Sci 53:120–126. doi: 10.1139/cjfas-53-1-120 CrossRefGoogle Scholar
  24. National Oceanic and Atmospheric Administration (1997) Endangered and threatened species: listing of several evolutionarily significant units (ESUs) of west coast steelhead. US Fed Regist 62:43937–43954Google Scholar
  25. National Oceanic and Atmospheric Administration (2002) Endangered and threatened species: range extension for endangered steelhead in southern California. US Fed Regist 67:21586–21598Google Scholar
  26. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New YorkGoogle Scholar
  27. Nielsen JL, Fountain MC, Wright JM (1997) Biogeographic analysis of Pacific trout (Oncorhynchus mykiss) in California and Mexico based on mitochondrial DNA and nuclear microsatellites. In: Kocher TD, Stepien CA (eds) Molecular systematics of fishes. Academic Press, London, pp 53–73CrossRefGoogle Scholar
  28. Olsen JB, Miller SJ, Spearman WJ, Wenburg JK (2003) Patterns of intra- and inter-population genetic diversity in Alaskan coho salmon: implications for conservation. Conserv Genet 4:557–569. doi: 10.1023/A:1025684104113 CrossRefGoogle Scholar
  29. O’Malley KG, Sakamoto T, Danzmann RG, Ferguson MM (2002) Quantitative trait loci for spawning date and body weight in rainbow trout: testing for conserved effects across ancestrally duplicated chromosomes. J Hered 94:273–284. doi: 10.1093/jhered/esg067 CrossRefGoogle Scholar
  30. O’Reilly PT, Hamilton LC, McConnell SK, Wright JM (1996) Rapid analysis of genetic variation in Atlantic salmon (Salmo salar) by PCR multiplexing of dinucleotide and tetranucleotide microsatellites. Can J Fish Aquat Sci 53:2292–2298. doi: 10.1139/cjfas-53-10-2292 CrossRefGoogle Scholar
  31. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358PubMedGoogle Scholar
  32. Pearse DP, Donohoe C, Garza JC (2007) Population genetics of steelhead (Oncorhynchus mykiss) in the Klamath River. Environ Biol Fishes 80:377–387. doi: 10.1007/s10641-006-9135-z CrossRefGoogle Scholar
  33. Perry GM, Danzmann RG, Fergusson MM, Gibson JP (2001) Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86:333–341. doi: 10.1046/j.1365-2540.2001.00838.x CrossRefPubMedGoogle Scholar
  34. Piry S, Alapetite A, Cornuet J-M, Paetkau D, Baudouin L, Estoup A (2004) GeneClass2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539. doi: 10.1093/jhered/esh074 CrossRefPubMedGoogle Scholar
  35. Poissant J, Knight TW, Ferguson MM (2005) Nonequilibrium conditions following landscape rearrangement: the relative contribution of past and current hydrological landscapes on the genetic structure of a stream-dwelling fish. Mol Ecol 14:1321–1331. doi: 10.1111/j.1365-294X.2005.02500.x CrossRefGoogle Scholar
  36. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  37. Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201. doi: 10.1073/pnas.94.17.9197 CrossRefPubMedGoogle Scholar
  38. Raymond M, Rousset F (1995) Genepop version 1.2: population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  39. Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conserv Biol 5:325–329. doi: 10.1111/j.1523-1739.1991.tb00144.x CrossRefGoogle Scholar
  40. Scribner KT, Gust JR, Fields RL (1996) Isolation and characterization of novel salmon microsatellite loci: cross-species amplification and population genetic applications. Can J Fish Aquat Sci 53:833–841. doi: 10.1139/cjfas-53-4-833 CrossRefGoogle Scholar
  41. Small MP, Beacham TD, Withler RE, Nelson RJ (1998) Discrimination of coho salmon (Oncorhynchus kisutch) populations within the Fraser River, British Columbia using microsatellite DNA markers. Mol Ecol 7:141–155. doi: 10.1046/j.1365-294x.1998.00324.x CrossRefGoogle Scholar
  42. Smith CT, Koop BF, Nelson RJ (1998) Isolation and characterization of coho salmon (Oncorhynchus kisutch) microsatellites and their use in other salmonids. Mol Ecol 7:1613–1621. doi: 10.1046/j.1365-294X.1998.00474.x CrossRefGoogle Scholar
  43. Spidle AP, Schill WB, Lubinski BA, King TL (2001) Fine-scale population structure in Atlantic salmon from Maine’s Penobscot River drainage. Conserv Genet 2:11–24. doi: 10.1023/A:1011580217381 CrossRefGoogle Scholar
  44. Wang J (2004) Sibship reconstruction from genetic data with typing errors. Genetics 166:1963–1979. doi: 10.1534/genetics.166.4.1963 CrossRefPubMedGoogle Scholar
  45. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evol Int J Org Evol 38:1358–1370. doi: 10.2307/2408641 Google Scholar
  46. Wenburg JK, Bentzen P (2001) Genetic and behavioral evidence for restricted gene flow among coastal cutthroat trout populations. Trans Am Fish Soc 130:1049–1069. doi:10.1577/1548-8659(2001)130<1049:GABEFR>2.0.CO;2CrossRefGoogle Scholar
  47. Williamson KS, Cordes JF, May BP (2002) Characterization of microsatellite loci in Chinook salmon (Oncorhynchus tshawytscha) and cross-species amplification in other salmonids. Mol Ecol Notes 2:17–19. doi: 10.1046/j.1471-8286.2002.00129.x CrossRefGoogle Scholar

Copyright information

© US Government 2008

Authors and Affiliations

  • Anthony J. Clemento
    • 1
    • 2
  • Eric C. Anderson
    • 1
  • David Boughton
    • 1
  • Derek Girman
    • 3
  • John Carlos Garza
    • 1
    • 2
    Email author
  1. 1.NOAA Southwest Fisheries Science CenterSanta CruzUSA
  2. 2.Department of Ocean SciencesUniversity of CaliforniaSanta CruzUSA
  3. 3.Department of BiologySonoma State UniversityRohnert ParkUSA

Personalised recommendations