Conservation Genetics

, 10:1401 | Cite as

Characterization of 8 polymorphic microsatellite loci in the neotropical ant-garden ant, Camponotus femoratus (Fabricius)

  • Warren Booth
  • Elsa Youngsteadt
  • Coby Schal
  • Edward L. Vargo
Technical Note
  • 77 Downloads

Abstract

Camponotus femoratus is an abundant and behaviorally dominant ant in lowland Amazonian rainforests, where this species participates in a complex and obligate seed-dispersal mutualism. C. femoratus typically cohabits with another ant species Crematogaster levior in an apparently amiable but poorly understood interaction. Despite these outstanding characteristics, the population genetics and dispersal patterns of C. femoratus are unknown. We isolated eight polymorphic microsatellite loci for C. femoratus from a genomic library enriched for di-, tri-, and tetra-nucleotide repeats. We detected 2 to 17 alleles per locus, with levels of observed heterozygosity ranging from 0.286 to 0.714.

Keywords

Camponotus Formicidae Di-nucleotide microsatellite Tri-nucleotide microsatellite Tetra-nucleotide microsatellite 

References

  1. Booth W, Lewis VR, Taylor RL et al (2008a) Identification and characterization of 15 polymorphic microsatellite loci in the western dry wood termite, Incisitermes minor. Mol Ecol Res 8:1102–1104CrossRefGoogle Scholar
  2. Booth W, Youngsteadt E, Schal C, Vargo EL (2008b) Polymorphic loci for the ant-garden ant, Crematogaster levior (Forel). Conserv Genet doi:10.1007/s10592-008-9597-y
  3. Crozier RH, Kaufmann B, Carew ME, Crozier YC (1999) Mutability of microsatellites developed for the ant Camponotus consobrinus. Mol Ecol 8:271–276. doi:10.1046/j.1365-294X.1999.00565.x CrossRefPubMedGoogle Scholar
  4. Davidson DW (1988) Ecological studies of neotropical ant gardens. Ecology 69:1138–1152. doi:10.2307/1941268 CrossRefGoogle Scholar
  5. Dopman EB, Bogdanowicz SM, Harrison RG (2004) Genetic mapping of sexual isolation between E and Z pheromone strains of the European corn borer (Ostinia nubilalis). Genetics 167:301–309. doi:10.1534/genetics.167.1.301 CrossRefPubMedGoogle Scholar
  6. Gertsch P, Pamilo P, Varvio SL (1995) Microsatellites reveal high genetic diversity within colonies of Camponotus ants. Mol Ecol 4:257–260. doi:10.1111/j.1365-294X.1995.tb00216.x CrossRefPubMedGoogle Scholar
  7. Giegerich R, Meyer F, Schleiermacher C (1996) ISMB-96, GeneFisher—Software support for the detection of postulated genes. In: Proceedings of the fourth international conference on intelligent systems for molecular biology, AAAI Press (ISSN 57735-002-2)Google Scholar
  8. Goodisman MAD, Hahn A (2005) Breeding system, colony structure, and genetic differentiation in the Camponotus festinatus species complex of carpenter ants. Evol Int J Org Evol 59:2185–2199Google Scholar
  9. Hölldobler B, Wilson EO (1990) The ants. Belknap Press, CambridgeGoogle Scholar
  10. Perera OP, Snodgrass GL, Scheffler BE et al (2007) Characterization of eight polymorphic microsatellite markers in the tarnished plant bug, Lygus lineolaris (Palisot de Beauvois). Mol Ecol Notes 7:987–989. doi:10.1111/j.1471-8286.2007.01747.x CrossRefGoogle Scholar
  11. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  12. Wilson EO (1987) The arboreal ant fauna of Peruvian Amazon forests: a first assessment. Biotropica 19:245–251. doi:10.2307/2388342 CrossRefGoogle Scholar
  13. Wilson EO (2003) Pheidole in the New World: a dominant, hyperdiverse genus. Harvard University Press, CambridgeGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Warren Booth
    • 1
  • Elsa Youngsteadt
    • 1
  • Coby Schal
    • 1
  • Edward L. Vargo
    • 1
  1. 1.Department of Entomology and W. M. Keck Center for Behavioral BiologyNorth Carolina State UniversityRaleighUSA

Personalised recommendations