Conservation Genetics

, Volume 10, Issue 2, pp 489–496 | Cite as

Evidence of recent population bottlenecks and inbreeding in British populations of Bechstein’s bat, Myotis bechsteinii

  • Christopher J. Durrant
  • Trevor J. C. Beebee
  • Frank Greenaway
  • David A. Hill
Research Article


We investigated the population genetics of seven maternity roosts of Bechstein’s bats widely distributed across the south of England. Across all of the populations sampled, two mitochondrial DNA microsatellite loci were fixed for single haplotypes. Genetic diversity across eight nuclear microsatellite loci was similar in all seven populations, with a mean He of 0.727. However, six of the populations showed substantial homozygote excess, with FIS estimates greater than zero, indicative of recent inbreeding. Bottleneck tests also implied that six of the populations have experienced recent declines. Genetic differentiation among the populations was low, with a mean intersite FST estimate of 0.041. There was no significant isolation by distance using allele frequency-based criteria (FST and genetic distances), however, a weak correlation was found using the allele size-based RST criterion. Assignment tests were unable to distinguish the seven sampling sites as distinct clusters. Mean intra-roost relatedness (r) was 0.079, indicative of recent inbreeding relative to German populations. All but one of the bats had one or more half or full siblings in its maternity roost. In addition, family relationships of individuals within a colony were significantly commoner than family relationships among four proximal roosts <8 km apart. The results are discussed in the context of conservation requirements for this rare British bat.


Population genetics Myotis Bottleneck Microsatellites 


  1. Castella V, Ruedi M, Excoffier L (2001) Contrasted patterns of mitochondrial and nuclear structure among colonies of the bat Myotis myotis. J Evol Biol 14:708–720. doi:10.1046/j.1420-9101.2001.00331.x CrossRefGoogle Scholar
  2. Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution Int J Org Evolution 21:550–570. doi:10.2307/2406616 Google Scholar
  3. Chesser RK (1991) Gene diversity and female philopatry. Genetics 127:437–447PubMedGoogle Scholar
  4. Corander J, Waldmann P, Sillanpaa MJ (2003) Bayesian analysis of genetic differentiation between populations. Genetics 163:367–374PubMedGoogle Scholar
  5. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  6. Duchesne P, Étienne C, Bernatchez L (2006) PERM: a computer program to detect structuring factors in social units. Mol Ecol Notes 6:965–967. doi:10.1111/j.1471-8286.2006.01414.x CrossRefGoogle Scholar
  7. Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x PubMedCrossRefGoogle Scholar
  8. Goodman SJ (1997) RST CALC: a collection of computer programs for calculating unbiased estimates of genetic differentiation and determining their significance for microsatellite data. Mol Ecol 6:881–885. doi:10.1111/j.1365-294X.1997.tb00143.x CrossRefGoogle Scholar
  9. Goudet J (1995) FSTAT version 1.2: a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  10. Goudet J, Perrin N, Waser P (2002) Tests for sex-biased dispersal using biparentally inherited genetic markers. Mol Ecol 11:1103–1114. doi:10.1046/j.1365-294X.2002.01496.x PubMedCrossRefGoogle Scholar
  11. Hill DA, Greenaway F (2005) Effectiveness of an acoustic lure for surveying bats in British woodlands. Mammal Rev 35:116–122. doi:10.1111/j.1365-2907.2005.00058.x CrossRefGoogle Scholar
  12. Kalinowski ST, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579. doi:10.1111/j.1471-8286.2006.01256.x CrossRefGoogle Scholar
  13. Kerth G, Konig B (1999) Fission, fusion and non-random associations in female Bechstein’s bats (Myotis bechsteinii). Behaviour 136:1187–1202. doi:10.1163/156853999501711 CrossRefGoogle Scholar
  14. Kerth G, Morf L (2004) Behavioural and genetic data suggest that Bechstein’s bats predominantly mate outside the breeding habitat. Ethology 110:987–999. doi:10.1111/j.1439-0310.2004.01040.x CrossRefGoogle Scholar
  15. Kerth G, Petit E (2005) Colonisation and dispersal in a social species, the Bechstein’s bat (Myotis bechsteinii). Mol Ecol 14:3943–3950. doi:10.1111/j.1365-294X.2005.02719.x PubMedCrossRefGoogle Scholar
  16. Kerth G, Mayer F, Petit E (2002a) Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol Ecol 11:1491–1498. doi:10.1046/j.1365-294X.2002.01528.x PubMedCrossRefGoogle Scholar
  17. Kerth G, Safi K, Konig B (2002b) Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav Ecol Sociobiol 52:203–210. doi:10.1007/s00265-002-0499-6 CrossRefGoogle Scholar
  18. Kerth G, Kiefer A, Trappmann C, Weishaar M (2003) High gene diversity at swarming sites suggests hot spots for gene flow in the endangered Bechstein’s bat. Conserv Genet 4:491–499. doi:10.1023/A:1024771713152 CrossRefGoogle Scholar
  19. Kerth G, Petrov B, Conti D et al (2008) Communally breeding Bechstein’s bats have a stable social system that is independent from the postglacial history and location of the populations. Mol Ecol 17:2368–2381. doi:10.1111/j.1365-294X.2008.03768.x PubMedCrossRefGoogle Scholar
  20. Macdonald D, Barrett P (1993) Mammals of Britain & Europe. HarperCollins, LondonGoogle Scholar
  21. Mayer F, Kerth G (2005) Microsatellite evolution in the mitochondrial genome of Bechstein’s bat (Myotis bechsteinii). J Mol Evol 61:408–416. doi:10.1007/s00239-005-0040-4 PubMedCrossRefGoogle Scholar
  22. Nei M (1972) Genetic distances between populations. Am Nat 106:283–292. doi:10.1086/282771 CrossRefGoogle Scholar
  23. Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:536–538. doi:10.1111/j.1471-8286.2004.00684.x Google Scholar
  24. Parsons KN, Jones G (2000) Dispersion and habitat use by Myotis daubentonii and Myotis nattereri during the swarming season: implications for conservation. Anim Conserv 6:283–290. doi:10.1017/S1367943003003342 CrossRefGoogle Scholar
  25. Parsons KN, Jones G, Davidson-Watts I, Greenaway F (2003a) Swarming of bats at underground sites in Britain-implications for conservation. Biol Conserv 11:63–70. doi:10.1016/S0006-3207(02)00250-1 CrossRefGoogle Scholar
  26. Parsons KN, Jones G, Greenaway F (2003b) Swarming activity of temperate zone microchiroptera bats: effects of season, time of night and weather conditions. J Zool 261:257–264. doi:10.1017/S0952836903004199 CrossRefGoogle Scholar
  27. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size. Queensland Government, Department of Primary Industries and Fisheries, Brisbane, AustraliaGoogle Scholar
  28. Petit E, Mayer F (1999) Male dispersal in the noctule bat (Nyctalu noctula): what are the limits? Proc R Soc Lond B Biol Sci 266:1717–1722. doi:10.1098/rspb.1999.0837 CrossRefGoogle Scholar
  29. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedGoogle Scholar
  30. Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  31. Rivers NM, Butlin RK, Altringham JD (2005) Genetic population structure of Natterer’s bats explained by mating at swarming sites and philopatry. Mol Ecol 14:4299–4312PubMedGoogle Scholar
  32. Rossiter RJ, Jones G, Ransome RD, Barratt EM (2002) Relatedness, structure and kin-biased foraging in the greater horseshoe bat (Rhinolophus ferrumequinum). Behav Ecol Sociobiol 51:510–518. doi:10.1007/s00265-002-0467-1 CrossRefGoogle Scholar
  33. Rowe G, Beebee TJC, Burke T (1997) PCR primers for polymorphic microsatellite loci in the anuran amphibian Bufo calamita. Mol Ecol 6:401–402. doi:10.1046/j.1365-294X.1997.00197.x PubMedCrossRefGoogle Scholar
  34. Safi K, Kerth G (2004) A comparative analysis of specialisation and extinction risk in temperate-zone bats. Conserv Biol 18:1293–1303. doi:10.1111/j.1523-1739.2004.00155.x CrossRefGoogle Scholar
  35. Schofield HW, Mitchell-Jones AJ, Ovenden DW (2003) The bats of Britain and Ireland. Vincent Wildlife Trust, LondonGoogle Scholar
  36. Swofford DL, Selander RB (1981) BIOSYS-1, a FORTRAN program for the comprehensive analysis of electrophoretic data in population genetics and systematics. J Hered 72:281–283Google Scholar
  37. Waples RS, Do C (2007) ldne: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Notes 7:167–184. doi:10.1111/j.1471-8286.2006.01567.x CrossRefGoogle Scholar
  38. Wickramasinghe LP, Harris S, Jones G, Vaughan N (2003) Bat activity and species richness on organic and conventional farms: impact of agricultural intensification. J Appl Ecol 40:984–993. doi:10.1111/j.1365-2664.2003.00856.x CrossRefGoogle Scholar
  39. Worthington Wilmer WJ, Barratt EM (1996) A non-lethal method of tissue sampling for genetic studies of chiropterans. Bat Res News 37:1–3Google Scholar
  40. Yalden DW (1999) The history of British mammals. Poyser, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Christopher J. Durrant
    • 1
    • 2
  • Trevor J. C. Beebee
    • 1
  • Frank Greenaway
    • 1
  • David A. Hill
    • 1
  1. 1.School of Life SciencesUniversity of SussexFalmer, BrightonUK
  2. 2.Department of NutritionKing’s College LondonLondonUK

Personalised recommendations