Conservation Genetics

, Volume 10, Issue 2, pp 369–377 | Cite as

Assessment of genetic diversity patterns in Chilean quinoa (Chenopodium quinoa Willd.) germplasm using multiplex fluorescent microsatellite markers

  • F. F. Fuentes
  • E. A. Martinez
  • P. V. Hinrichsen
  • E. N. Jellen
  • P. J. Maughan
Research Article

Abstract

Quinoa (Chenopodium quinoa Willd.) is a staple seed crop in the Andean region of South America. Improving quinoa productivity is a primary food-security issue for this region, and has been part of the impetus for the establishment of several new quinoa breeding programs throughout the Andean region. Chilean quinoa has been characterized as morphologically diverse and bifurcated into coastal and highland ecotypes. The success of emerging breeding programs will rely heavily on the development of core germplasm collections and germplasm evaluation—especially of the coastal quinoa ecotypes that are often neglected in traditional breeding programs. Thus, the objective of this study was to characterize and quantify the genetic diversity within 28 Altiplano and 31 coastal Chilean accessions of quinoa using microsatellite markers. To facilitate the analysis, we also report the development of seven sets of fluorescent multiplexed microsatellite PCR reactions that result in genetic information for 20 highly polymorphic microsatellite loci. A total of 150 alleles were detected among the quinoa accession, ranging from 2 to 20 alleles per locus and an average 7.5 allele/locus. Both cluster (UPGMA) and principal component analyses separated the accessions into two discrete groups. The first group contained quinoa accessions from the north (Andean highlands) and the second group consisted of accessions from the south (lowland or coastal). Three accessions from Europe were classified into the southern quinoa group. The data obtained in the diversity analyses highlights the relationships within and among northern and southern Chilean quinoa accessions and provides the quinoa scientific community with a new set of easy to use and highly informative genetic markers.

Keywords

Chenopodium quinoa Genetic diversity Multiplex fluorescent SSR Highland quinoa Coastal quinoa 

References

  1. Chauhan GS, Eskin NAM, Tkachuk R (1999) Effect of saponin extraction on the nutritional quality of quinoa (Chenopodium quinoa Willd.). J Food Sci Technol 36:123–126Google Scholar
  2. Christensen SA, Pratt DB, Pratt C, Stevens MR, Jellen EN, Coleman CE, Fairbanks DJ, Bonifacio A, Maughan PJ (2007) Assessment of genetic diversity in the USDA and CIP-FAO international nursery collections of quinoa (Chenopodium quinoa Willd.) using microsatellite markers. Plant Genet Res 5:82–95CrossRefGoogle Scholar
  3. Coulter L, Lorenz K (1990) Quinoa–composition, nutritional value, food applications. Lebensm-Wiss U Technol 23:203–207Google Scholar
  4. Cusack DF (1984) Quinoa: grain of the Incas. Ecologist 14:21–31Google Scholar
  5. Fuentes F, Delatorre J, Tello V, Arenas J, Riquelme A, Oliva M, Lanino M, Carevic A (2005) Diversidad genética intrapredial en germoplasma nativo de quinoa (Chenopodium quinoa Willd.) de la Comunidad de Ancovinto, Altiplano de la I Región de Chile. En Anales del V SIRGEALC: 121. Montevideo, UruguayGoogle Scholar
  6. Galway NW, Leakey CLA, Price KR, Fenwick GR (1990) Chemical composition and nutritional characteristics of quinoa (Chenopodium quinoa Willd.). Food Sci Nutr 42:245–261Google Scholar
  7. Gandarillas H (1979) Genética y origen. In: Tapia ME (ed) quinoa y Kaniwa. Instituto Interamericano de Ciencias Agrícolas, Bogotá, pp 45–64Google Scholar
  8. InfoStat (2004) InfoStat versión 2004. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  9. Johns MA, Skroch P, Nienhuis J, Hinrichsen P, Bascur G, Muñoz C (1997) Gene pool classification of common bean landraces from Chile based on RAPD and morphological data. Crop Sci 37:605–613Google Scholar
  10. Mason SL, Stevens MR, Jellen EN, Bonifacio A, Fairbanks DJ, Coleman CE, McCarty RR, Rasmussen AG, Maughan PJ (2005) Development and use of microsatellite markers for germplasm characterization in quinoa (Chenopodium quinoa Willd.). Crop Sci 45:1618–1630CrossRefGoogle Scholar
  11. Maughan J, Bonifacio A, Jellen E, Stevens M, Coleman C, Ricks M, Mason S, Jarvis D, Gardunia B, Fairbanks D (2004) A genetic linkage map of quinoa (Chenopodium quinoa) based on AFLP, RAPD, and SSR markers. Theor Appl Genet 109:1188–1195PubMedCrossRefGoogle Scholar
  12. Maughan J, Kolano B, Maluszynska J, Coles N, Bonifacio A, Coleman C, Stevens M, Fairbanks D, Parkinson S, Jellen E (2006) Molecular and cytological characterization of ribosomal DNAs in Chenopodium quinoa and Chenopodium berlandieri. Genome 49:825–839PubMedCrossRefGoogle Scholar
  13. McGregor CE, van Treuren R, Hoekstra R, van Hintum ThJL (2002) Analysis of the wild potato germplasm of the series Acaulia with AFLPs: implications for ex situ conservation. Theor Appl Genet 104:146–156PubMedCrossRefGoogle Scholar
  14. Nei M (1978) Estimation of average heterozygosities and genetics distances from a small number of individuals. Genetics 89:583–590PubMedGoogle Scholar
  15. Pratt C (2003) AFLP analysis of genetic diversity in the USDA Chenopodium quinoa collection. M.S. Thesis. Brigham Young University, Provo, UT, USAGoogle Scholar
  16. Quian W, Ge S, Hong D (2006) Genetic diversity in accessions of wild rice Oryza granulata from South and Southeast Asia. Genet Resour Crop Evol 53(1):197–204CrossRefGoogle Scholar
  17. Risi J, Galwey NW (1984) The Chenopodium grains of the Andes: Inca crops for modern agriculture. Adv Appl Biol 10:145–216Google Scholar
  18. Ruas P, Bonifacio A, Ruas C, Fairbanks D, Andersen W (1999) Genetic relationship among 19 accessions of six species Chenopodium L., by Random Amplified Polymorphic DNA fragments (RAPD). Euphytica 105:25–32CrossRefGoogle Scholar
  19. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Press, New YorkGoogle Scholar
  20. Simmonds NW (1971) The breeding system of Chenopodium quinoa. I. Male sterility. Heredity 27:73–82CrossRefGoogle Scholar
  21. Tapia M, Gandarillas H, Alandia S, Cardozo A, Mujica R, Ortiz R, Otazu J, Rea J, Salas B, Zanabria E (1979) Quinoa y kañiwa: Cultivos andinos. CIID-IICA, Bogotá, ColombiaGoogle Scholar
  22. Todd JJ, Vodkin LO (1996) Duplications that suppress and deletions that restore expression from a chalcone synthase multigene family. Plant Cell 8:687–699PubMedCrossRefGoogle Scholar
  23. Ward SM (2000) Allotetraploid segregation for single-gene morphological characters in quinoa (Chenopodium quinoa Willd). Euphytica 116:11–16CrossRefGoogle Scholar
  24. Wilson HD (1988a) Quinoa biosystematics I: domesticated populations. Econ Bot 42:461–477Google Scholar
  25. Wilson HD (1988b) Quinoa biosystematics II: free living populations. Econ Bot 42:478–494Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • F. F. Fuentes
    • 1
  • E. A. Martinez
    • 2
  • P. V. Hinrichsen
    • 3
  • E. N. Jellen
    • 4
  • P. J. Maughan
    • 4
  1. 1.Departamento de Agricultura del DesiertoUniversidad Arturo PratIquiqueChile
  2. 2.Centro de Estudios Avanzados en Zonas Áridas (CEAZA)Universidad de La SerenaLa SerenaChile
  3. 3.Instituto de Investigaciones Agropecuarias, Centro Regional de Investigación La PlatinaINIA Santa RosaChile
  4. 4.Department of Plant & Wildlife SciencesBrigham Young UniversityProvoUSA

Personalised recommendations