Conservation Genetics

, Volume 10, Issue 4, pp 935–954

Cross-species amplification of microsatellites in crocodilians: assessment and applications for the future

  • Lee G. Miles
  • Stacey L. Lance
  • Sally R. Isberg
  • Chris Moran
  • Travis C. Glenn
Short Communication

Microsatellite DNA loci have emerged as the dominant genetic tool for addressing questions associated with genetic diversity in many wildlife species, including crocodilians. Despite their usefulness, their isolation and development can be costly, as well as labour intensive, limiting their wider use in many crocodilian species. In this study, we investigate the cross-species amplification success of 82 existing microsatellites previously isolated for the saltwater crocodile (Crocodylus porosus) in 18 non-target crocodilian species; Alligator sinensis, Caiman crocodylus, Caiman latirostris, Caiman yacare, Melanosuchus niger, Paleosuchus palpebrosus, Crocodylus acutus, Mecistops cataphractus, Crocodylus intermedius, Crocodylus johnstoni, Crocodylus mindorensis, Crocodylus moreletii, Crocodylus niloticus, Crocodylus novaeguineae, Crocodylus palustis, Crocodylus rhombifer, Crocodylus siamensis, and Osteolaemus tetraspis. Our results show a high level of microsatellites cross-amplification making available polymorphic markers for a range of crocodilian species previously lacking informative genetic markers.


Crocodile Crocodilian Microsatellites Cross-species amplification 


  1. Davis L, Glenn T, Strickland D et al (2002) Microsatellite DNA analyses support an east–west phylogeographic split of American alligator populations. J Exp Zool (Mol Dev Evol) 294:352–372CrossRefGoogle Scholar
  2. Dessauer H, Glenn T, Densmore L (2002) Studies on the molecular evolution of the Crocodylia: footprints in the sands of time. J Exp Zool (Mol Dev Evol) 294:302–311CrossRefGoogle Scholar
  3. Dever J, Densmore L III (2001) Microsatelittes in Moreleti’s crocodile (Crocodylus moreletti) and their utility in addressing crocodilian population genetics. J Herpetol 35:541–544CrossRefGoogle Scholar
  4. Dever J, Strauss R, Rainwater T et al (2002) Genetic diversity, population subdivision and gene flow in wild populations of Morelet’s crocodile (Crocodylus moreletii) in Belize, Central America. Copeia 2002:1078–1091CrossRefGoogle Scholar
  5. FitzSimmons N, Tanksley S, Forstner M et al (2001) Microsatellite markers for Crocodylus: new genetic tools for population genetics, mating system studies and forensics. In: Grigg J, Seebacher F, Franlin C (eds) Crocodilian biology and evolution. Surrey Beatty and Sons, Chipping Norton, Australia, pp 51–57Google Scholar
  6. FitzSimmons N, Buchan J, Lam P et al (2002) Identification of purebred Crocodylus siamensis for reintroduction in Vietnam. J Exp Zool (Mol Dev Evol) 294:373–381CrossRefGoogle Scholar
  7. Glenn T, Stephan W, Dessauer H, Braun M (1996) Allelic diversity in alligator microsatellites loci is negatively correlated with GC content of flanking sequences and evolutionary conservation of PCR amplifiability. Mol Biol Evol 13:1151–1154PubMedGoogle Scholar
  8. Glenn T, Dessauer H, Braun M (1998) Characterisation of microsatellite DNA loci in American alligators. Copeia 1998:591–601CrossRefGoogle Scholar
  9. Isberg S, Chen Y, Barker S, Moran C (2004) Analysis of microsatellites and parentage testing in saltwater crocodiles. J Hered 95(5):445–449PubMedCrossRefGoogle Scholar
  10. Isberg S, Johnston S, Chen Y, Moran C (2006) First evidence of higher female recombination in a species with temperature-dependent sex determination: the saltwater crocodile. J Hered 97(6):599–602PubMedCrossRefGoogle Scholar
  11. Janke A, Gullberg A, Hughes S et al (2005) Mitogenomic analyses place the gharial (Gavialis gangeticus) on crocodile tree and provide pre-K/T divergence times for most crocodilians. J Mol Evol 61:620–626PubMedCrossRefGoogle Scholar
  12. Kalinowski S, Taper M, Marshall T (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1106PubMedCrossRefGoogle Scholar
  13. Moore S, Sargeant L, King T et al (1991) The conservation of dinucleotide microsatellite among mammalian genomes allows the use of heterologous PCR primer pairs in closely related species. Genomics 10:654–660PubMedCrossRefGoogle Scholar
  14. Moran C (1993) Microsatellite repeats in pig (Sus domestica) and chicken (Gallus domesticus) genomes. J Hered 84:274–280PubMedGoogle Scholar
  15. Primmer C, Moller A, Ellegren H (1996) A wide-range survey of cross-species microsatellite amplification in birds. Mol Ecol 5(3):365–378PubMedCrossRefGoogle Scholar
  16. Primmer C, Painter J, Koshtinen M et al (2005) Factors affecting avian cross-species microsatellite amplification. J Avian Biol 36:348–360CrossRefGoogle Scholar
  17. Ramos R, de Buffrenil V, Ross J (1994) Current status of the Cuban crocodile, Crocodylus rhombifer, in the wild. In: Crocodiles, proceedings of the 12th working meeting of the crocodile specialist group, IUCN, Gland, Switzerland, pp, 113–140Google Scholar
  18. Ray D, Dever J, Platt S et al (2004) Low levels of nucleotide diversity in Crocodylus morelettii and evidence of hybridisation with C. acutus. Conserv Genet 5:449–464CrossRefGoogle Scholar
  19. Selkoe K, Toonen R (2006) Microsatellites for ecologists: a practical guide to using and evaluating markers. Ecol Lett 9:615–629PubMedCrossRefGoogle Scholar
  20. Shedlock A, Botka C, Zhao S et al (2007) Phylogenomics of non-avian reptiles and the structure of the ancestral amniote genome. PNAS 104(8):2767–2772PubMedCrossRefGoogle Scholar
  21. Verdade L, Zucoloto R, Coutinho L (2002) Microgeographic variation in Caiman latirostris. J Exp Zool (Mol Dev Evol) 294:387–396CrossRefGoogle Scholar
  22. Wilson A, Massonnet B, Simon J et al (2004) Cross-species amplification of microsatellite loci in aphids: assessment and application. Mol Ecol Notes 4:104–109CrossRefGoogle Scholar
  23. Zucoloto R, Verdade L, Coutinho L (2002) Microsatellite DNA Library for Caiman latirostris. J Exp Zool (Mol Dev Evol) 294:346–351CrossRefGoogle Scholar
  24. Zucoloto R, Villela P, Verdade L, Coutinho L (2006) Cross-species microsatellite amplification in South American Caimans (Caiman spp and Paleosuchus palpebrosus). Genet Mol Biol 29(1):75–79CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Lee G. Miles
    • 1
  • Stacey L. Lance
    • 2
  • Sally R. Isberg
    • 1
    • 3
  • Chris Moran
    • 1
  • Travis C. Glenn
    • 2
    • 4
  1. 1.Faculty of Veterinary ScienceUniversity of SydneySydneyAustralia
  2. 2.Savannah River Ecology LaboratoryUniversity of GeorgiaAikenUSA
  3. 3.Porosus Pty LtdPalmerstonAustralia
  4. 4.Department of Environmental Health ScienceUniversity of GeorgiaAthensUSA

Personalised recommendations