Conservation Genetics

, Volume 10, Issue 3, pp 605–609 | Cite as

Multilocus heterozygosity and inbreeding in the Siberian jay

  • Jussi S. AlhoEmail author
  • Bo-Göran Lillandt
  • Sonja Jaari
  • Juha Merilä
Technical Note


Because of its common negative association with fitness, inbreeding is a major concern in conservation biology. Traditionally it has been measured as individual inbreeding coefficient calculated from the pedigree, but recently multilocus heterozygosity estimates have become commonly used as proxies. However, theoretical and simulation studies have cast doubt on the validity of these surrogates especially when they are based on only a few molecular markers. Yet, empirical studies reporting the correlation between multilocus heterozygosity and inbreeding coefficient are rare. We studied this relationship in a wild Siberian jay (Perisoreus infaustus) population subject to a long-term field study over 30 years. The correlations between inbreeding coefficient and the employed heterozygosity measures—standardized heterozygosity and internal relatedness—based on 21 microsatellite loci were weak. These results together with results from theoretical and simulation studies caution against use of multilocus heterozygosity estimates to study inbreeding in natural populations.


Inbreeding Heterozygosity Microsatellites Relatedness Siberian jay 



We thank two anonymous reviewers for their constructive comments on the manuscript. We are grateful to all the people who during the course of the study have helped with the field work and laboratory analyses. Our research was supported by Research Foundation of the University of Helsinki (JA & JM), Emil Aaltonen Foundation (JA), Finnish Ministry of Education (JA), R.E. Serlachius stiftelse (B-GL), Maj and Tor Nessling Foundation (B-GL & JM) and Academy of Finland (SJ & JM).


  1. Acevedo-Whitehouse K, Gulland F, Greig D et al (2003) Disease susceptibility in California sea lions. Nature 422:435CrossRefGoogle Scholar
  2. Amos W, Worthington Wilmer J, Fullard K et al (2001) The influence of parental relatedness on reproductive success. Proc R Soc Lond B 268:2021–2027CrossRefGoogle Scholar
  3. Aparicio JM, Ortego J, Cordero PJ (2007) Can a simple algebraic analysis predict markers–genome heterozygosity correlations? J Hered 98:93–96PubMedCrossRefGoogle Scholar
  4. Balloux F, Amos W, Coulson T (2004) Does heterozygosity estimate inbreeding in real populations? Mol Ecol 13:3021–3031PubMedCrossRefGoogle Scholar
  5. Bensch S, Andrén H, Hansson B et al (2006) Selection for heterozygosity gives hope to a wild population of inbred wolves. PLoS ONE 1:e72. doi: 10.1371/journal.pone.0000072 PubMedCrossRefGoogle Scholar
  6. Chakraborty R (1981) The distribution of the number of heterozygous loci in an individual in natural populations. Genetics 98:461–466PubMedGoogle Scholar
  7. Coltman DW, Pilkington JG, Smith JA et al (1999) Parasite-mediated selection against inbred Soay sheep in a free-living island population. Evolution 53:1259–1267CrossRefGoogle Scholar
  8. Curik I, Zechner P, Sölkner J et al (2003) Inbreeding, microsatellite heterozygosity, and morphological traits in Lipizzan horses. J Hered 94:125–132PubMedCrossRefGoogle Scholar
  9. DeWoody YD, DeWoody JA (2005) On the estimation of genome-wide heterozygosity using molecular markers. J Hered 96:85–88PubMedCrossRefGoogle Scholar
  10. Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Pearson Prentice Hall, Harlow, EssexGoogle Scholar
  11. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, CambridgeGoogle Scholar
  12. Fridolfsson A-K, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  13. Grant PR, Grant BR, Petren K (2001) A population founded by a single pair of individuals: establishment, expansion and evolution. Genetica 112–113:359–382PubMedCrossRefGoogle Scholar
  14. Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162CrossRefGoogle Scholar
  15. Hedrick P, Fredrickson R, Ellegren H (2001) Evaluation of d2, a microsatellite measure of inbreeding and outbreeding, in wolves with a known pedigree. Evolution 55:1256–1260PubMedGoogle Scholar
  16. Hunter M, Gibbs JP (2006) Fundamentals of conservation biology, 3rd edn. Blackwell Publishing, OxfordGoogle Scholar
  17. Jaari S, Välimäki K, Merilä J (in press) Isolation and characterization of 100 polymorphic microsatellite loci for the Siberian jay (Perisoreus infaustus). Mol Ecol ResGoogle Scholar
  18. Jensen H, Bremset EM, Ringsby TH et al (2007) Multilocus heterozygosity and inbreeding depression in an insular house sparrow metapopulation. Mol Ecol 16:4066–4078PubMedCrossRefGoogle Scholar
  19. Kalinowski ST, Taper ML, Marshall TC (2007) Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol Ecol 16:1099–1006PubMedCrossRefGoogle Scholar
  20. Keller LF, Waller DM (2002) Inbreeding effects in wild populations. Trends Ecol Evol 17:230–241CrossRefGoogle Scholar
  21. Kim SH, Cheng KM, Ritland C et al (2007) Inbreeding in Japanese quail estimated by pedigree and microsatellite analyses. J Hered 98:378–381PubMedCrossRefGoogle Scholar
  22. Lillandt B-G, Bensch S, von Schantz T (2001) Parentage determination in kin-structured populations: microsatellite analyses in the Siberian jay Perisoreus infaustus during a 25-year population study. Avian Sci 1:3–14Google Scholar
  23. Lillandt B-G, Bensch S, Hansson B et al (2002) Isolation and cross-species amplification of microsatellite loci in the Siberian jay (Perisoreus infaustus). Hereditas 137:157–160PubMedCrossRefGoogle Scholar
  24. Lillandt B-G, Bensch S, von Schantz T (2003) Family structure in the Siberian jay as revealed by microsatellite analyses. Condor 105:505–514CrossRefGoogle Scholar
  25. Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  26. Markert JA, Grant PR, Grant BR et al (2004) Neutral locus heterozygosity, inbreeding, and survival in Darwin’s ground finches (Geospiza fortis and G. scandens). Heredity 92:306–315PubMedCrossRefGoogle Scholar
  27. Mitton JB, Pierce BA (1980) The distribution of individual heterozygosity in natural populations. Genetics 95:1043–1054PubMedGoogle Scholar
  28. Overall ADJ, Byrne KA, Pilkington JG et al (2005) Heterozygosity, inbreeding and neonatal traits in Soay sheep on St Kilda. Mol Ecol 14:3383–3393PubMedCrossRefGoogle Scholar
  29. Pemberton J (2004) Measuring inbreeding depression in the wild: the old ways are the best. Trends Ecol Evol 19:613–615PubMedCrossRefGoogle Scholar
  30. Queller DC, Goodnight KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275CrossRefGoogle Scholar
  31. Roff DA (2002) Inbreeding depression: tests of the overdominance and partial dominance hypotheses. Evolution 56:768–775PubMedGoogle Scholar
  32. Slate J, Kruuk LEB, Marshall TC et al (2000) Inbreeding depression influences lifetime breeding success in a wild population of red deer (Cervus elaphus). Proc R Soc Lond B 267:1657–1662CrossRefGoogle Scholar
  33. Slate J, David P, Dodds KG et al (2004) Understanding the relationship between the inbreeding coefficient and multilocus heterozygosity: theoretical expectations and empirical data. Heredity 93:255–265PubMedCrossRefGoogle Scholar
  34. Svensson L (1992) Identification guide to European passerines. Naturhistoriska Riksmuseet, StockholmGoogle Scholar
  35. Wright S (1922) Coefficients of inbreeding and relationship. Am Nat 56:330–338CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Jussi S. Alho
    • 1
    Email author
  • Bo-Göran Lillandt
    • 1
  • Sonja Jaari
    • 1
  • Juha Merilä
    • 1
  1. 1.Ecological Genetics Research Unit, Department of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland

Personalised recommendations