Conservation Genetics

, Volume 10, Issue 4, pp 923–933 | Cite as

No phylogeographic structure in the circumpolar snowy owl (Bubo scandiacus)

  • Gunnhild MarthinsenEmail author
  • Liv Wennerberg
  • Roar Solheim
  • Jan T. Lifjeld
Short Communication


The snowy owl (Bubo scandiacus) is a nomadic species with a circumpolar distribution. It has recently declined in the western Palearctic and may thus be worthy of special consideration for conservation. We investigated genetic structure in three well separated geographic regions within the snowy owls’ breeding range. We sequenced two mitochondrial genes; the control region and cytochrome b, and two Z-chromosome introns; VLDLR-9 and BRM-15. We found no phylogeographic structure among the sampled regions, indicating high levels of gene flow in the recent past and possibly still today. Intra-population diversity did not vary between regions for the control region, but for Cyt b, North American birds had higher haplotype diversity than Scandinavian and eastern Siberian birds. Western Palearctic birds do not seem to be genetically deprived or inbred. Genetic diversity in the snowy owl was not lower than Scandinavian populations of three other owl species: tawny owls (Strix aluco), Tengmalm’s owls (Aegolius funereus) and eagle owls (Bubo bubo).


Genetic structure Gene flow mtDNA control region Phylogeography Population genetics Z-chromosome intron 



The study received financial support from the Norwegian Ornithological Society and the Research Council of Norway. We thank the Field Museum in Chicago, the Swedish Museum of Natural History, the Zoological Museum at the University of Oulu, Tromsø Museum, Lista Bird Observatory, the Swedish Polar Research Secretariat, colleagues at the Dept of Animal Ecology at Lund University, C. Steel and E. Dahl for samples, and D. Ehrich, J. Johnson, four anonymous referees and colleagues at NHM, for valuable comments on the manuscript.


  1. Alerstam T (1990) Bird migration. Cambridge University Press, CambridgeGoogle Scholar
  2. Baker AJ, Marshall HD (1997) Mitochondrial control region sequences as tools for understanding evolution. In: Mindell DP (ed) Avian molecular evolution and systematics. Academic Press, San DiegoGoogle Scholar
  3. Barrowclough GF, Gutierrez RJ, Groth JG (1999) Phylogeography of spotted owl (Strix occidentalis) populations based on mitochondrial DNA sequences: gene flow, genetic structure, and a novel biogeographic pattern. Evolution 53:919–931CrossRefGoogle Scholar
  4. BirdLife International (2004) Nyctea scandiaca In: IUCN 2006. 2006 IUCN red list of threatened species. Downloaded on 07 February 2007
  5. Brito PH (2005) The influence of Pleistocene glacial refugia on tawny owl genetic diversity and phylogeography in western Europe. Mol Ecol 14:3077–3094PubMedCrossRefGoogle Scholar
  6. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  7. Cramp S, Simmons MP (eds) (1994) Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. Oxford University Press, LondonGoogle Scholar
  8. Dalén L, Fuglei E, Hersteinsson P et al (2005) Population history and genetic structure of a circumpolar species: the arctic fox. Biol J Linn Soc 84:79–89CrossRefGoogle Scholar
  9. del Hoyo J, Elliott A, Sargatal J (eds) (1996) Handbook of the birds of the world. Hoatzin to Auks, vol 3. Lynx Edicions, BarcelonaGoogle Scholar
  10. Drovetski S (2003) Plio-Pleistocene climatic oscillations, Holarctic biogeography and speciation in an avian subfamily. J Biogeogr 30:1173–1181CrossRefGoogle Scholar
  11. El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839CrossRefGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Biol Online 1:47–50Google Scholar
  13. Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491PubMedGoogle Scholar
  14. Flagstad Ø, Røed KH (2003) Refugial origins of reindeer (Rangifer tarandus L.) inferred from mitochondrial DNA sequences. Evolution 57:658–670PubMedGoogle Scholar
  15. Fridolfson A, Ellegren H (1999) A simple and universal method for molecular sexing of non-ratite birds. J Avian Biol 30:116–121CrossRefGoogle Scholar
  16. Fuller M, Holt D, Schueck L (2003) Snowy owl movements: variation on the migration theme. In: Berthold P, Gwinner E, Sonnenschein E (eds) Avian migration. Springer-Verlag, Berlin Heidelberg, pp 359–366Google Scholar
  17. Gärdenfors U (ed) (2005) Rödlistade arter i Sverige 2005—The 2005 red list of Swedish species. ArtDatabanken, SLU, UppsalaGoogle Scholar
  18. Haig SM, Mullins TD, Forsman ED et al (2004) Genetic identification of spotted owls, barred owls, and their hybrids: legal implications of hybrid identity. Conserv Biol 18:1347–1357CrossRefGoogle Scholar
  19. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  20. Hansson B, Åkesson M, Slate J et al (2005) Linkage mapping reveals sex-dimorphic map distances in a passerine bird. Proc R Soc Lond B 272:2289–2298CrossRefGoogle Scholar
  21. Haring E, Kruckenhauser L, Gamauf A et al (2001) The complete sequence of the mitochondrial genome of Buteo buteo (Aves, Accipitridae) indicates an early split in the phylogeny of raptors. Mol Biol Evol 18:1892–1904PubMedGoogle Scholar
  22. Ho SYW, Larson G (2006) Molecular clocks: when times are a-changin’. Trends Ecol Evol 22:79–83Google Scholar
  23. IUCN (2006) 2006 IUCN red list of threatened species. Downloaded on 22 November 2006
  24. Kålås JA, Viken Å, Bakken T (eds) (2006) Norwegian red list. Artsdatabanken, NorwayGoogle Scholar
  25. Koopman ME, McDonald DB, Hayward GD et al (2005) Genetic similarity among Eurasian subspecies of boreal owls Aegolius funereus. J Avian Biol 36:179–183CrossRefGoogle Scholar
  26. Krajewski C, King DG (1996) Molecular divergence and phylogeny: rates and patterns of cytochrome b evolution in cranes. Mol Biol Evol 13:21–30PubMedGoogle Scholar
  27. Kuhner MK (2006) LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics 22:768–770PubMedCrossRefGoogle Scholar
  28. Kuhner MK, Smith LP (2007) Comparing likelihood and Bayesian coalescent estimation of population parameters. Genetics 175:155–165PubMedCrossRefGoogle Scholar
  29. Marshall HD, Baker AJ (1997) Structural conservation and variation in the mitochondrial control region of fringilline finches (Fringilla spp.) and the greenfinch (Carduelis chloris). Mol Biol Evol 14:173–184PubMedGoogle Scholar
  30. Mysterud I (1970) Hypotheses concerning characteristics and causes of population movements in Tengmalm’s owl (Aegolius funereus (L.)). Nytt Magasin For Zoologi 18:49–74Google Scholar
  31. Panchal M (2007) The automation of nested clade phylogeographic analysis. Bioinformatics 23:509–510PubMedCrossRefGoogle Scholar
  32. Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855CrossRefGoogle Scholar
  33. Portenko LA (1972) Die Schnee-Eule, Nyctea scandiaca. A. Ziemsen Verlag, Wittenberg LuterstadtGoogle Scholar
  34. Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818PubMedCrossRefGoogle Scholar
  35. Posada D, Crandall KA, Templeton AR (2000) GeoDis: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488PubMedCrossRefGoogle Scholar
  36. Rassi P, Alanen A, Kanerva T et al (eds) (2001) The red list of Finnish species. Ministry of the Environment & Finnish Environment Institute, HelsinkiGoogle Scholar
  37. Ruokonen M, Kvist L (2002) Structure and evolution of the avian mitochondrial control region. Mol Phylogenet Evol 23:422–432PubMedCrossRefGoogle Scholar
  38. Sangster G, Collinson JM, Helbig AJ et al (2004) Taxonomic recommendations for British birds: second report. Ibis 146:153–157CrossRefGoogle Scholar
  39. Smith N (2005) Snowy owl telemetry research project., Massachusetts Audubon Society. Accessed 04 Feb 2007
  40. Solheim R (1994) Snøugle Nyctea scandiaca. In: Gjershaug JO, Thingstad PG, Eldøy S, Byrkjeland S (eds) Norsk fugleatlas. NOF, Klæbu, p 272Google Scholar
  41. Solheim R (2004) 30 år uten snøugle. Vår fuglefauna 27:102–108Google Scholar
  42. Sorenson MD, Ast JC, Dimcheff DE et al (1999) Primers for a PCR-based approach to mitochondrial genome sequencing in birds and other vertebrates. Mol Phylogenet Evol 12:105–114PubMedCrossRefGoogle Scholar
  43. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  44. Templeton AR, Maxwell T, Posada D et al (2005) Tree scanning: a method for using haplotype trees in phenotype/genotype association studies. Genetics 169:441–453PubMedCrossRefGoogle Scholar
  45. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar
  46. Wenink PW, Baker AJ, Rösner H-U et al (1996) Global mitochondrial DNA phylogeography of Holarctic breeding dunlins (Calidris alpina). Evolution 50:318–330CrossRefGoogle Scholar
  47. Wennerberg L (2001) Breeding origin and migration pattern of dunlin (Calidris alpina) revealed by mitochondrial DNA analysis. Mol Ecol 10:1111–1120PubMedCrossRefGoogle Scholar
  48. Wink M, Heidrich P (2000) Molecular systematics of owls (Strigiformes) based on DNA-sequences of the mitochondrial cytochrome b gene. In: Chancellor RD, Meyburg B-U (eds) Raptors at risk: proceedings of the V world conference on birds of prey and owls, Midrand, Johannesburg, South Africa 4–11 August 1998. Hancock House Publishers, Berlin, pp 819–828Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Gunnhild Marthinsen
    • 1
    Email author
  • Liv Wennerberg
    • 1
  • Roar Solheim
    • 2
  • Jan T. Lifjeld
    • 1
  1. 1.National Centre for Biosystematics, Natural History MuseumUniversity of OsloOsloNorway
  2. 2.Agder Museum of Natural HistoryKristiansand SNorway

Personalised recommendations