Conservation Genetics

, 10:303 | Cite as

Limited genetic diversity and high differentiation among the remnant adder (Vipera berus) populations in the Swiss and French Jura Mountains

  • Sylvain Ursenbacher
  • Jean-Claude Monney
  • Luca Fumagalli
Research Article

Abstract

Although the adder (Vipera berus) has a large distribution area, this species is particularly threatened in Western Europe due to high habitat fragmentation and human persecution. We developed 13 new microsatellite markers in order to evaluate population structure and genetic diversity in the Swiss and French Jura Mountains, where the species is limited to only a few scattered populations. We found that V. berus exhibits a considerable genetic differentiation among populations (global FST = 0.269), even if these are not geographically isolated. Moreover, the genetic diversity within populations in the Jura Mountains and in the less perturbed Swiss Alps is significantly lower than in other French populations, possibly due to post-glacial recolonisation processes. Finally, in order to minimize losses of genetic diversities within isolated populations, suggestions for the conservation of this species in fragmented habitats are proposed.

Keywords

Population genetic structure Jura Mountains Microsatellite Snake Vipera berus 

References

  1. Allendorf FW, Luikart G (2007) Conservation and the genetics of populations, 1st edn. Blackwell Publishing Ltd, Malden, MA, USAGoogle Scholar
  2. Bartley D, Bagley M, Gall G et al (1992) Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations. Conserv Biol 6:365–375CrossRefGoogle Scholar
  3. Bonnet X, Naulleau G (1996) Catchability in snakes: consequences for estimates of breeding frequency. Can J Zool 74:233–239Google Scholar
  4. Brassel KE, Reif D (1979) A procedure to generate Thiessen polygons. Geogr Anal 325:31–36Google Scholar
  5. Castanet J, Guyetant R (1989) Atlas de répartition des Amphibiens et Reptiles de France. Société Herpétologique de France, ParisGoogle Scholar
  6. Caughley G (1994) Directions in conservation biology. J Anim Ecol 63:215–244CrossRefGoogle Scholar
  7. Clark RW, Brown WS, Stechert R et al (2008) Integrating individual behaviour and landscape genetics: the population structure of timber rattlesnake hibernacula. Mol Ecol 17:719–730Google Scholar
  8. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660PubMedCrossRefGoogle Scholar
  9. Corbett K (1989) Conservation of European reptiles and amphibians. SEH, IUCN, LondonGoogle Scholar
  10. Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014PubMedGoogle Scholar
  11. di Rienzo A, Peterson AC, Garza JC et al (1994) Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci U S A 91:3166–3170PubMedCrossRefGoogle Scholar
  12. Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50Google Scholar
  13. Frankham R (1995) Effective population-size adult population size ratios in wildlife—a review. Genet Res 66:95–107CrossRefGoogle Scholar
  14. Frankham R (1996) Relationship of genetic variation to population size in wildlife. Conserv Biol 10:1500–1508CrossRefGoogle Scholar
  15. Frankham R (2005) Genetics and extinction. Biol Conserv 126:131–140CrossRefGoogle Scholar
  16. Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge, UKGoogle Scholar
  17. Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925PubMedGoogle Scholar
  18. Gautschi B, Widmer A, Joshi J et al (2002) Increased frequency of scale anomalies and loss of genetic variation in serially bottlenecked populations of the dice snake, Natrix tessellata. Conserv Genet 3:235–245CrossRefGoogle Scholar
  19. Gibbs HL, Prior KA, Weatherhead PJ (1994) Genetic analysis of populations of threatened snake species using RAPD markers. Mol Ecol 3:329–337CrossRefGoogle Scholar
  20. Gibbs HL, Prior KA, Weatherhead PJ et al (1997) Genetic structure of populations of the threatened eastern massasauga rattlesnake, Sistrurus c. catenatus: evidence from microsatellite DNA markers. Mol Ecol 6:1123–1132PubMedCrossRefGoogle Scholar
  21. Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486Google Scholar
  22. Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154Google Scholar
  23. Hardy OJ, Vekemans X (2002) SPAGEDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620Google Scholar
  24. Hartl D, Clark AG (1997) Principles of population genetics, 3rd edn. Sinauer Associates, SunderlandGoogle Scholar
  25. Hewitt GM (1999) Post-glacial re-colonization of European biota. Biol J Linn Soc 68:87–112CrossRefGoogle Scholar
  26. Hofer U, Monney J-C, Dusej G (2001) Les reptiles de Suisse. Répartition, habitats, protection. Birkhäuser Verlag AGGoogle Scholar
  27. Ischer A (1930) La Vipère péliade des Ponts de Martel. Le Rameau de Sapin du club jurassien 1:2–5Google Scholar
  28. Jäggi C, Wirth T, Baur B (2000) Genetic variability in subpopulations of the asp viper (Vipera aspis) in the Swiss Jura mountains: implications for a conservation strategy. Biol Conserv 94:69–77CrossRefGoogle Scholar
  29. Kaufmann M (1893) Les Vipères de France: morsures—traitement. Asselin et Houzeau, ParisGoogle Scholar
  30. Kumar S, Tamura K, Nei M (2004) MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163Google Scholar
  31. Leimu R, Mutikainen P, Koricheva J et al (2006) How general are positive relationships between plant population size, fitness and genetic variation? J Ecol 94:942–952CrossRefGoogle Scholar
  32. Lougheed SC, Gibbs HL, Prior KA et al (1999) Hierarchical patterns of genetic population structure in black rat snakes (Elaphe obsoleta obsoleta) as revealed by microsatellite DNA analysis. Evolution 53:1995–2001CrossRefGoogle Scholar
  33. Luiselli L (1993) High philopatry can produce strong sexual competition in male adders, Vipera berus. Amphib Reptil 14:310–311CrossRefGoogle Scholar
  34. Madsen T, Shine R (1992) Sexual competition among brothers may influence offspring sex ratio in snake. Evolution 46:1549–1552CrossRefGoogle Scholar
  35. Madsen T, Stille B, Shine R (1996) Inbreeding depression in an isolated population of adders Vipera berus. Biol Conserv 75:113–118CrossRefGoogle Scholar
  36. Madsen T, Shine R, Olsson M et al (1999) Conservation biology—restoration of an inbred adder population. Nature 402:34–35CrossRefGoogle Scholar
  37. Madsen T, Ujvari B, Olsson M (2004) Novel genes continue to enhance population growth in adders (Vipera berus). Biol Conserv 120:145–147CrossRefGoogle Scholar
  38. Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190PubMedCrossRefGoogle Scholar
  39. Mantel N (1967) Detection of disease clustering and a generalized regression approach. Cancer Res 27:209PubMedGoogle Scholar
  40. Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  41. Monmonier MS (1973) Maximum-difference barriers—alternative numerical regionalization method. Geogr Anal 5:245–261Google Scholar
  42. Monney J-C (1996) Biologie comparée de Vipera aspis L. et de Vipera berus L. (Reptilia, Ophidia, Viperidae) dans une station des Préalpes bernoises. Unpublished thesis, University of Neuchâtel, Switzerland, 179 ppGoogle Scholar
  43. Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 27:17–23Google Scholar
  44. Neumeyer R (1987) Density and seasonal movements of the adder (Vipera berus L.) on a subalpine environment. Amphib Reptil 2:63–82Google Scholar
  45. Ohta T, Kimura M (1973) Model of mutation appropriate to estimate number of electrophoretically detectable alleles in a finite population. Genet Res 22:201–204Google Scholar
  46. Otis DL, Burnham KP, White GC et al (1978) Statistical inference from capture data on closed animal population. Wildl Monogr 62:7–135Google Scholar
  47. Peel D, Ovenden JR, Peel SL (2004) NeEstimator: software for estimating effective population size. Queensland Government, Department of Primary Industries and FisheriesGoogle Scholar
  48. Pinston H, Craney E, Pépin D et al (2000) Amphibiens et Reptiles de Franche-Comté. Atlas commenté de répartition. Groupe naturaliste de Franche-Comté, Besançon, FranceGoogle Scholar
  49. Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503CrossRefGoogle Scholar
  50. Prestt I (1971) An ecological study of the viper Vipera berus in southern Britain. J Zool 164:373–418CrossRefGoogle Scholar
  51. Prosser MR, Gibbs HL, Weatherhead PJ (1999) Microgeographic population genetic structure in the northern water snake, Nerodia sipedon sipedon detected using microsatellite DNA loci. Mol Ecol 8:329–333PubMedCrossRefGoogle Scholar
  52. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  53. Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228PubMedGoogle Scholar
  54. Saint Girons H (1980) Biogéographie et évolution des vipères européennes. C R Soc Biogéogr 496:146–172Google Scholar
  55. Saint Girons H (1981) Quelques observations sur la dispersion des nouveau-nés chez Vipera berus et Vipera aspis dans le bocage atlantique (Reptilia: Viperidae). Amphib Reptil 2:269–272CrossRefGoogle Scholar
  56. Sokal RR, Wartenberg DE (1983) A test of spatial autocorrelation analysis using an isolation-by-distance model. Genetics 105:219–237Google Scholar
  57. Soulé ME (1986) Conservation biology: the science of scarcity and diversity. Sinauer AssociatesGoogle Scholar
  58. Ujvari B, Madsen T, Kotenko T et al (2002) Low genetic diversity threatens imminent extinction for the Hungarian meadow viper (Vipera ursinii rakosiensis). Biol Conserv 105:127–130CrossRefGoogle Scholar
  59. Ursenbacher S, Monney JC (2003) Résultats de 5 années de suivi d’une population de Vipère péliade (Vipera berus) dans le Jura Suisse: estimation des effectifs et discussion des méthodes d’estimation. Bull Soc Herp Fr 107:15–25Google Scholar
  60. Ursenbacher S, Carlsson M, Helfer V et al (2006) Phylogeography and Pleistocene refugia of the Adder (Vipera berus) as inferred from mitochondrial DNA sequence data. Mol Ecol 15:3425–3437PubMedCrossRefGoogle Scholar
  61. Van Oosterhout C, Hutchinson WF, Wills DPM et al (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  62. Viitanen P (1967) Hibernation and seasonal movements of the viper, Vipera berus berus (L.), in southern Finland. Ann Zool Fenn 4:472–546Google Scholar
  63. Villarreal X, Bricker J, Reinert HK et al (1996) Isolation and characterization of microsatellite loci for use in population genetic analysis in the timber rattlesnake, Crotalus horridus. J Hered 87:152–155PubMedGoogle Scholar
  64. Vitalis R, Couvet D (2001a) ESTIM 1.0: a computer program to infer population parameters from one- and two-locus gene identity probabilities. Mol Ecol Notes 1:354–356CrossRefGoogle Scholar
  65. Vitalis R, Couvet D (2001b) Two-locus identity probabilities and identity disequilibrium in a partially selfing subdivided population. Genet Res 77:67–81PubMedCrossRefGoogle Scholar
  66. Völkl W, Thiesmeier B (2002) Die Kreuzotter—ein Leben in festen Bahnen? Laurenti VerlagGoogle Scholar
  67. Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Sylvain Ursenbacher
    • 1
    • 2
    • 3
  • Jean-Claude Monney
    • 4
  • Luca Fumagalli
    • 1
  1. 1.Laboratoire de Biologie de la Conservation, Département d’Ecologie et Evolution, BiophoreUniversité de LausanneLausanneSwitzerland
  2. 2.School of Biological SciencesUniversity of WalesBangorUK
  3. 3.Department of Environmental Sciences, Section of Conservation BiologyUniversity of BaselBaselSwitzerland
  4. 4.Centre de Coordination pour la protection des Amphibiens et des Reptiles de Suisse (KARCH)NeuchatelSwitzerland

Personalised recommendations