Conservation Genetics

, Volume 10, Issue 3, pp 577–580 | Cite as

Tetranucleotide markers from the loggerhead sea turtle (Caretta caretta) and their cross-amplification in other marine turtle species

  • Brian M. Shamblin
  • Brant C. Faircloth
  • Mark G. Dodd
  • Dean A. Bagley
  • Llewellyn M. Ehrhart
  • Peter H. Dutton
  • Amy Frey
  • Campbell J. Nairn
Technical Note

Abstract

The loggerhead sea turtle (Caretta caretta) is a federally threatened species and listed as endangered by the World Conservation Union (IUCN). We describe primers and polymerase chain reaction (PCR) conditions to amplify 11 novel tetranucleotide microsatellite loci from the loggerhead sea turtle. We tested primers using samples from 22 females that nested at Melbourne Beach, Florida (USA). Primer pairs yielded an average of 11.2 alleles per locus (range of 4–24), an average observed heterozygosity of 0.83 (range 0.59–0.96), and an average polymorphic information content of 0.80 (range 0.62–0.94). We also demonstrate the utility of these primers, in addition to primers for 15 loci previously described, for amplifying microsatellite loci in four additional species representing the two extant marine turtle families: olive ridley (Lepidochelys olivacea), hawksbill (Eretmochelys imbricata), green turtle (Chelonia mydas), and leatherback (Dermochelys coriacea).

Keywords

Caretta caretta Loggerhead turtle Microsatellites Cross-amplification 

References

  1. Bowen BW, Karl SA (2007) Population genetics and phylogeography of sea turtles. Mol Ecol 16:4886–4907PubMedCrossRefGoogle Scholar
  2. Don RH, Cox PT, Wainwright BJ et al (1991) ‘Touchdown’ PCR to prevent spurious priming during gene amplification. Nucleic Acids Res 19:4008PubMedCrossRefGoogle Scholar
  3. FitzSimmons NN, Moritz C, Moore SS (1995) Conservation and dynamics of microsatellite loci over 300 million years of marine turtle evolution. Mol Biol Evol 12:432–440PubMedGoogle Scholar
  4. Glenn TC, Schable NA (2005) Isolating microsatellite DNA loci. Methods Enzymol 395:202–222PubMedCrossRefGoogle Scholar
  5. Grimberg J, Nawoschik S, Belluscio L et al (1989) A simple and efficient non-organic procedure for the isolation of genomic DNA from blood. Nucleic Acids Res 17:8390PubMedCrossRefGoogle Scholar
  6. Marshall TC, Slate J, Kruuk LEB et al (1998) Statistical confidence for likelihood-based paternity inference in natural populations. Mol Ecol 7:639–655PubMedCrossRefGoogle Scholar
  7. Monzón-Argüello C, Muñoz J, Marco A et al (2007) Twelve new polymorphic markers from the loggerhead sea turtle (Caretta caretta) and cross-species amplification on other marine turtle species. Conserv Gen. doi:10.1007/s10592-007-9446-4
  8. Raymond M, Rousset F (1995) GENEPOP (version 1.2) population genetics software for exact tests and ecumenicism. J Hered 86:248–249Google Scholar
  9. Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225CrossRefGoogle Scholar
  10. Rivalan P, Dutton PH, Baudry E et al (2006) Demographic scenario inferred from genetic data in leatherback turtles nesting in French Guiana and Suriname. Biol Conserv 130:1–9CrossRefGoogle Scholar
  11. Shamblin BM, Faircloth BC, Dodd M et al (2007) Tetranculeotide microsatellites from the loggerhead sea turtle (Caretta caretta). Mol Ecol Notes 7:784–787CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Brian M. Shamblin
    • 1
  • Brant C. Faircloth
    • 1
  • Mark G. Dodd
    • 2
  • Dean A. Bagley
    • 3
  • Llewellyn M. Ehrhart
    • 3
    • 4
  • Peter H. Dutton
    • 5
  • Amy Frey
    • 5
  • Campbell J. Nairn
    • 1
  1. 1.D. B. Warnell School of Forestry and Natural ResourcesThe University of GeorgiaAthensUSA
  2. 2.Wildlife Resources DivisionGeorgia Department of Natural ResourcesBrunswickUSA
  3. 3.Department of BiologyThe University of Central FloridaOrlandoUSA
  4. 4.Hubbs-SeaWorld Research InstituteOrlandoUSA
  5. 5.NOAA-FisheriesSouthwest Fisheries Science CenterLa JollaUSA

Personalised recommendations