Conservation Genetics

, Volume 10, Issue 4, pp 909–914

mtDNA indicates profound population structure in Indian tiger (Panthera tigris tigris)

  • Reeta Sharma
  • Heiko Stuckas
  • Ranjana Bhaskar
  • Sandeep Rajput
  • Imran Khan
  • Surendra Prakash Goyal
  • Ralph Tiedemann
Short Communication

Abstract

We analyzed mtDNA polymorphisms (parts of control region, ND5, ND2, Cytb, 12S, together 902 bp) in 59 scat and 18 tissue samples from 13 Indian populations of the critically endangered Indian tiger (Panthera tigris tigris), along with zoo animals as reference. Northern tiger populations exhibit two unique haplotypes suggesting genetic isolation. Western populations from Sariska (extinct in 2004) and Ranthambore are genetically similar, such that Ranthambore could serve as a source for reintroduction in Sariska. Zoo populations maintain mitochondrial lineages that are rare or absent in the wild.

Keywords

Conservation Indian tiger mtDNA Population genetics Scat 

References

  1. Avise JC (2000) Phylogeography. Harvard University Press, CambridgeGoogle Scholar
  2. Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659PubMedCrossRefGoogle Scholar
  3. Excoffier L, Laval G, Schneider S (2005) Arlequin ver 3.1: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50PubMedGoogle Scholar
  4. Johnsingh AJT, Goyal SP (2005) Tiger conservation in India: the past, present and the future. Indian Forester 131:1279–1296Google Scholar
  5. Lopez JV, Culver M, Stephens JC, Johnson WE, O’Brien SJ (1997) Rates of nuclear and cytoplasmic mitochondrial DNA sequence divergence in mammals. Mol Biol Evol 14:277–286PubMedGoogle Scholar
  6. Luo SJ, Kim JH, Johnson WE, Van der Walt J, Martenson J, Yuhki N, Miquelle DG et al (2004) Phylogeography and genetic ancestry of tigers (Panthera tigris). PLoS Biol 2:2275–2293Google Scholar
  7. Nsubuga AM, Robbins MM, Roeder AD, Morin PA, Boesch C, Vigilant L (2004) Factors affecting the amount of genomic DNA extracted from apes faeces and the identification of an improved sample storage method. Mol Ecol 13:2089–2094PubMedCrossRefGoogle Scholar
  8. Russelo MA, Gladyshev E, Miquelle D, Caccone A (2004) Potential genetic consequences of a recent bottleneck in the Amur tiger of the Russian far east. Conserv Genet 5:707–713CrossRefGoogle Scholar
  9. Sankhala K (2005) Tiger! The story of the Indian tiger. Natraj Publishers, DehradunGoogle Scholar
  10. Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: Application to human mitochondrial DNA. Genetics 152:1079–1089PubMedGoogle Scholar
  11. Seidensticker J, Christie S, Jackson P (1999) Riding the tiger: tiger conservation in human-dominated landscapes. Cambridge University Press, CambridgeGoogle Scholar
  12. Tiedemann R, Moll K, Paulus KB, Schlupp I (2005) New microsatellite loci confirm hybrid origin, parthenogenetic inheritance, and mitotic gene conversion in the gynogenetic Amazon molly (Poecilia formosa). Mol Ecol Notes 5:586–589CrossRefGoogle Scholar
  13. Wasser SK, Housten CS, Koehler GM, Cadd GG, Fain SR (1997) Techniques for application of faecal DNA methods to field studies of Ursids. Mol Ecol 6:1091–1097PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • Reeta Sharma
    • 1
    • 2
  • Heiko Stuckas
    • 1
  • Ranjana Bhaskar
    • 2
  • Sandeep Rajput
    • 2
  • Imran Khan
    • 2
  • Surendra Prakash Goyal
    • 2
  • Ralph Tiedemann
    • 1
  1. 1.Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Wildlife Institute of IndiaDehradunIndia

Personalised recommendations